TAHOPE Project Office


臺灣區域豪雨觀測與預報實驗

Taiwan-Area Heavy rain Observation and Prediction Experiment (TAHOPE)


Eng/繁中

Overview

計畫概述

Background

背景

Focus

聚焦

TAHOPE22

Visit SPol

參訪SPol


“Taiwan-Area Heavy rain Observation and Prediction Experiment” (TAHOPE) will be conducted from August 2019 to July 2022 to study Mei-Yu fronts, mesoscale convective systems (MCSs), and landfalling typhoons near Taiwan. During May to August 2020, our TAHOPE team will join the PRECIP experiment team from the US, the T-PARCII team from Japan, and the KPOP team from Korea to conduct the joint international field experiment for severe weather (Mei-yu fronts and typhoons) in the vicinity of Taiwan. The main themes of TAHOPE project range from large-scale environmental influence, mesoscale convective systems as well as microscale cloud physics processes, under the special topography of Taiwan Island with steep terrain. Through the joint network of intense observations, real-time or near real-time data assimilation and prediction will be conducted using advanced atmospheric models.

「臺灣區域豪雨觀測與預報實驗」(TAHOPE)為臺灣主導的大型觀測與預報實驗,預計執行三年 (2019年8月到2022年7月),其中於2020年5–8月期間TAHOPE實驗將與美國PRECIP2020實驗及日本TPARC-II 實驗三方共同推動國際聯合觀測實驗,是以臺灣區域為主體進行國際聯合劇烈天氣(梅雨與颱風)的密集觀測實驗, 所探討研究主題包含大尺度的環境影響、中尺度的對流系統與登陸颱風、乃至小尺度的雲微物理過程等, 在臺灣海島與高山陡坡特殊地形下,透過大氣密集觀測導入先進大氣預報模式,同時進行即時或準即時之資料同化與數值預報。


In order to accomplish this large internationall joint observation and prediction experiments, National Taiwan University takes a role in integrating the available domestic observation instruments and invites interested scientists to jointly submit an integrated three-year research proposal (from 1 August 2019 to 31 July 2022) to the Ministry of Science and Technology (MOST), Taiwan. The National Science Foundation (NSF) and National Oceanic and Atmodpheric Administration (NOAA) in the U.S. have approved the funding for several instruments (P3-aircraft, S-Pol radar, and CSU SEA-Pol radar) from the U.S. to combine with CWB’s operational observation facilities (radars, radiosondes, and DOSTAR dropsonde), and the atmospheric measurements (wind profiler) of National Applied Research Laboratory (NARL) to perform intense observation experiment during 25 May to 10 August 2020. The evaluation of data impact on the assimilation and prediction from Taiwan’s satellite (FORMOSAT-7) GPS RO and reflectometry measurements will also be carried out during the field experiment. The U.S. partners include project principal investigators, Dr. Michael Bell (CSU professor) and many renowned scientists (Profs. Yi-Leng Chen, Yuh-Lang Lin, Shu-Hua Chen, Kristen Rasmussen, Angela Rowe, Deanna Hence, Rob Rogers, and others). On Taiwan side, the TAHOPE Project Office led by Prof. Ming-Jen Yang, has been set up and integrated 10 subprojects related to the observation and data assimilation (6 subprojects during the period of 2020/08– 2022/08). In addition, other 9 subprojects related to the modeling and routine-data assimilation/analysis work are integrated into the TAHPEX (Taiwan-Area Heavy-rainfall Prediction Experiment) project (led by Prof. Chung-Chieh Wang at NTNU); the two TAHOPE and TAHPEX integrated projects are supporting each other through observation data exchange and resource sharing. Subprojects will be coordinated by the TAHOPE Project Office with the help of two senior scientists as project consultants (Prof. Ben J.-D. Jou at NTU and Dr. Bill Y.-H. Kuo at NCAR). The Scientific Advisory Committee consisting of senior scientists in Taiwan and USA will also provide valuable comments and suggestions on the proposed scientific goals and experimental design of the joint project.

為順利完成此國際聯合大型觀測實驗,國內大氣學門研究劇烈天氣的學者專家們已經整合國內產官學研的觀測儀器 ,邀請有興趣的同仁共同向科技部提出三年之整合研究計畫(2019/08– 2022/07)。目前美方已向美國NSF與NOAA提出多種觀測儀器/載具 (P3飛機、S-Pol雷達、CSU SEA-Pol雷達等)需求,搭配國內中央氣象局現有的作業觀測設備(雷達及探空)、國研院觀測能量 (C-Pol雷達、剖風儀、DOTSTAR飛機投落送、無人飛機),將於2020年5月中旬至8月與美國及日本三方共同進行國際聯合聯合觀測實驗 ,期間將特別對我國自主衛星(福衛7號)GPS掩星及海面反射儀觀測進行同化及預報的效益評估。美方主要計畫主持人為CSU教授 Michael Bell,加上其他知名氣象學者們(Profs. Yi-Leng Chen, YuhLang Lin, Kristen Rasmussen, Rob Rogers, Fuqing Zhang等人)。 我方目前已成立TAHOPE計畫辦公室,並已整合10個與觀測實驗與觀測資料即時同化相關的子計畫納入TAHOPE整合計畫,另外9個與模式與分析相關的子計畫納入 「臺灣地區豪大雨預報實驗計畫」(TAHPEX)整合計畫(由王重傑教授擔任主持人),由計畫辦公室協調分工,再由兩位顧問 (台大周仲島教授與NCAR郭英華博士)協助統整以強化管控,並由成立的科學指導委員會對規劃進行的實驗設計與科學目標,提出寶貴建議及修正意見。


However, due to the global outbreak of corona virus (COVID-19) after February 2020, the NCAR S-Pol radar observation and intense sounding release are delayed for two year, i.e., they will be conducted in Taiwan from mid-May to early August of 2022. The forecast experiment by the MPAS model will be run in real time from May to August 2022, but the planned NOAA P3 aircraft observations in July 2022 are cancelled because of the failure of the lower-fuselage radar.

然而,2020年2月全球爆發新冠肺炎,NCAR SPOL雷達及密集加放探空往後推遲兩年,將於2022年5月中旬至8月上旬在臺灣進行觀測實驗。 MPAS模式的即時預報實驗將在5月到8月期間進行,但是原訂7月在臺灣附近進行飛行觀測任務的NOAA P3飛機由於機身下方雷達損壞而取消。

Most of severe rainfall events in the vicinity of Taiwan are resulted from Mei-yu frontal systems and impinging typhoons. Heavy or even severe rainfall, whatever produced over the steep slopes of Central Mountain Range (CMR) or coastal plains, often induces inundation and river runoff, causing significant life loss as well as environmental impacts and economic losses. In particular, severe landslide and debris flow are often associated with intense typhoons impinging Taiwan from every possible direction. There are pronounced improvement on numerical model prediction skill on rainfall recently, due to the advancement of model physics schemes, dynamic core refinement, more robust data assimilations with a variety of available observations, and possibly integrated statistical add-on values with artificial intelligence based on numerous ensemble predictions for varying scenarios (a big data for mining). However, prediction failures also exist occasionally or even become inevitable, most likely owing to insufficient resolvable atmospheric states that dictate the major role in the mechanisms responsible for severe rainfall. Our current radar coverage over Taiwan is world-class leading, together with plentiful surface observations, which should provide reasonable and intensive, although not comprehensive, depiction of the impinging systems, whatever Mei-yu fronts or typhoons (there will be almost no low-elevation observation gaps in 2019). This situation does not puzzle our operational forecasters and academic researchers as we all realize the importance of upgraded radar measurement capability (e.g., dual polarization) in exploring the essential characteristics and nature of cloud microphysics in the convective system as well as effectively collected upstream atmospheric conditions for both upcoming fronts and typhoons. Up to now, there still lack integrated observations near Taiwan or upstream for improving gaps in capability of numerical model prediction on such severe rainfall.

臺灣周邊強降雨事件多為梅雨鋒系統和颱風侵襲。 無論是在中央山脈陡坡或沿海平原上產生的強降水甚至劇烈降水,都經常引發洪水和河川逕流,造成重大生命損失、環境影響和經濟損失。 尤其是嚴重的山崩和土石流,往往伴隨著從各個可能的方向襲擊台灣的強烈颱風。 近期降雨數值模式預報技術有了顯著提高,仰賴於模式物理方案的進步、動力核心細緻化、各種可用的觀測數據進入更可靠的資料同化系統、基於數個不同情境的系集預報與利用人工智慧整合統計附加價值(大數據探勘)。 然而,預報失敗也偶爾發生,甚至不可避免,很可能是由於大氣狀態解析度不足,這決定了造成強降雨機制中的主要因素。 目前台灣的雷達覆蓋率是世界一流的,再加上豐富的地面觀測,雖然不全面,但應該可以提供合理而深入的描述天氣系統,無論梅雨鋒面或颱風(2019年後將幾乎沒有低海拔觀測死角)。 對於即將到來的鋒面和颱風,這種情況並不困擾我們的作業預報員和學術研究人員,因為我們都意識到雷達觀測能力提升(例如雙偏極化雷達)在探索對流系統中雲微物理的基本特徵和性質以及有效收集上游大氣條件很重要。 到目前為止,台灣附近或上游仍缺乏整合觀測,以改善數值模式對此類強降雨的預測能力的差距。


There were field observation experiments during the past targeted on Mei-yu frontal systems and impinging typhoons, paving a way of better understanding the processes of the induced heavy rainfall/convection and/or providing useful upstream data for improving NWP. Then, why is there a need to conduct a joint experiment over Taiwan in the upcoming years? The most important reason is the uniqueness of Taiwan islands as the optimal, if not best, natural mesoscale laboratory in the world that illustrates the possibility of better understanding of various dynamic and physical processes in convective clouds, which could be generally suited to other places, and an arena of various measurements to quantify their contributions to NWP, whatever focusing on severe rainfall or violent wind. These coincident efforts on routinely conducing measurements then will be greatly signified when the joint experiments may additionally collect highly demanding in-situ observations for NWP thru advanced data assimilation to fill the gaps in current forecast skill on convective rainfall and typhoon tracks. These problems range from how to improve initial conditions from different types of observations from surface, land or sea, aircraft or space, different data assimilation systems (ensemble or variation based, or both joint like ensemble/hybrid), how to unveil the detailed processes and nature of convective clouds with dual-polarization measurement, how to cast the improved physics and initial analysis into state-of-the-art numerical models (both regional and global) with updated comprehensive physics and parameterization schemes, and finally also most demanding, how to provide controlling diagrams for the sophisticated interactions of the impinging systems with the topography (steep CMR and surrounding ocean) involved. In brief, we should say that the joint experiment is going to enhance scientific baseline of DA and modeling, provide better understanding of physical and dynamic intricacy, narrow forecast gaps of QPF, and address challenges of key issues and highlight possible opportunities of future movement.

過去曾針對梅雨鋒系統和侵台颱風進行野外觀測實驗,能更好地了解誘發強降雨/強對流的物理過程和/或提供有用的上游資料以提高數值天氣預報。 那麼,為什麼未來幾年還需要在台灣進行聯合觀測實驗呢?最重要的原因是台灣島作為世界上最佳的(如果不是最好的)天然具有獨特性的中尺度實驗室,說明觀測實驗能更好地了解對流雲中各種動力和物理過程的可能性,這些過程通常也適用於其他地方,以及在強降雨或強風下量化各種觀測儀器對數值天氣預報的貢獻。 聯合實驗可以為數值天氣預報模式額外收集珍貴的現地觀測,透過先進的資料同化,填補當前對流降雨和颱風路徑預報的技術空缺,這些短時間密集的努力對往後長期例行的觀測具有重大意義。 這次實驗的科學問題的範圍包括如何透過來自地面、陸地或海洋、飛機或太空的不同類型的觀測、不同的資料同化系統(基於系集、變分或兩者混合)來改善模式初始條件; 如何利用雙偏極化儀器揭開對流雲詳細的物理過程; 如何將改進的物理過程和初始場引入最先進的數值模式(區域和全球)中; 最後也是最困難的,如何提供侵臺的天氣系統與地形(陡峭的中央山脈和周圍的海洋)之間複雜交互作用的機制圖。 簡而言之,我們可以說聯合實驗將提升資料同化和建模的科學水平,更好地理解物理和動力的複雜性,縮小定量降水預報的偏差,解決關鍵科學議題的挑戰,點亮未來實驗行動的機會。

- Scientific Goals -

- 科學目標 -

To understand the essential synoptic forcings of the associated Mei-yu convective systems and typhoons in the vicinity of Taiwan complex terrain through international collaborative experimentation.

透過國際合作實驗,瞭解臺灣複雜地形附近伴隨梅雨鋒面和颱風的重要綜觀強迫。

To realize the multiple-scale interations among large-scale flow environments, mesoscale systems and microscale cloud convections responsible for heavy rainfall in Mei-yu convective systems and typhoons.

為了瞭解梅雨對流系統和颱風導致強降雨的大尺度流場環境、中尺度系統和小尺度雲對流的多尺度交互作用。

To identify and verify the characteristics of cloud-microphysical processes in extreme precipitation associated with the Mei-yu convective systems and typhoons over the Pacific ocean and the Central Mountain Range.

為了確認和驗證太平洋及中央山脈區域伴隨梅雨對流系統和颱風極端降水的雲微物理過程特徵。

To explore upstream TC track sensitivity and forecast bias through assimilation of satellite and aircraft observations and identify possible dominant factors in TC structure and intensity changes including effect of ocean and boundary-layer fluxes.

透過衛星和飛機觀測資料同化,探索上游的颱風路徑敏感度和預報偏差並確定颱風結構和強度變化可能的主導因素,包括海洋和邊界層通量的影響。

To investigate the predictability of heavy precipitation and violent wind associated with the Mei-yu convective systems and typhoons and highlight the contributions from radar, satellite and aircraft observations with advanced data assimilation systems.

研究梅雨對流系統和颱風伴隨的強降水和強風的可預報度,並強調雷達、衛星和飛機觀測在先進資料同化系統的貢獻。


For Mei-yu fronts, the focal points will be on the severe rainfall and MCS with influence from sub-seasonal variation and upstream conditions. For typhoons, we will focus on both wind and severe rainfall that are closely related to typhoon track variations as well as structure and intensity changes. The common ingredient of physical/dynamic processes in the MCS of heavy rainfall will be microphysics, with/without terrain effects. Key issues, improvement on QPE and QPF, are our major goals to contribute the scientific engagement to the advancement of forecast skill as well as much better understanding of underlying mechanisms for the severe rainfall.

The observation projects have the responsibility to deliver the data in real time for use by other three groups. Also, these prompt observations can provide the QPE results to modeling propjects. For the data assimilation (DA) projects, one mission is to provide the sensitivity region for the observation design before the experiment year, which will be help for the determinations of suitable deployed locations for the mobile radars and S-Pol as well as the target area of the aircraft surveillance. During the experiment year, assimilation studies with the experimental data in real time or near-real time are also crucial for this project to help identify various contributions of the experimental observations. Through the efforts of DA projects, better initial conditions can be provided to TAHPEX(modeling) group for both regional and global model simulations.

Missions

觀測任務


IOP時間區間表格下載 (2022.09.14) ↓



Equipments

儀器

Sites

觀測站

Research Radars

研究雷達

CWB Radars

氣象局雷達

Other Radars

其他雷達

Soundings

探空系統

MPDs

水氣光達

MRRs

微波降雨雷達

Distrometers

雨滴譜儀

Wind Profilers

剖風儀

Radiometer

輻射儀

S-Pol

S-Pol Radar Site

S-Pol雷達

S-Pol雷達站

NTU XPol

Yilan Science Park

NTU XPol

宜蘭科學園區

TEAM-R

Yong-an Fishing Port

TEAM-R

永安漁港站

CSU SEA-Pol

Yonaguni, Japan

CSU SEA-Pol

與那國島 日本

RCWF

五分山雷達

RCHL

花蓮雷達

RCCG

七股雷達

RCKT

墾丁雷達

RCMD

五分山C雷達

RCSL

樹林雷達

RCNT

南屯雷達

RCLY

林園雷達

RCCK

清泉崗雷達

RCMK

馬公雷達

RCGI

綠島雷達

RCTP

機場雷達

Vaisala

Penjiayu

探空

彭佳嶼站

Vaisala

Banqiao

探空

板橋站

Vaisala

Hualien

探空

花蓮站

Vaisala

Hsinchu

探空

新竹站

Vaisala

Yilan

探空

宜蘭站

Storm Tracker

Yilan

微型探空

宜蘭站

MPD

NCU

微脈衝差異衰減雷射雷達

中大站

MPD

Hsinchu

微脈衝差異衰減雷射雷達

新竹站

MPD

Yilan

微脈衝差異衰減雷射雷達

宜蘭站
MRR

Yilan

微波降雨雷達
宜蘭站

JWD

Tamsui

雨滴譜儀

淡水站

PARSIVEL

Yong-an Fishing Port

雨滴譜儀

永安漁港站

Wind Profiler

Xinwu

剖風儀

新屋站

Wind Profiler

NCU

剖風儀

中大站

Lidar WPF

Hsinchu

光達剖風儀

新竹站

Radiometer

SPol Radar Site

輻射儀

SPol雷達站

S-Pol Radar

S-Pol雷達

NCAR/EOL's S-Pol radar is an advanced, transportable, ground-based dual-polarized Doppler weather radar. S-Pol transmits at the 10 cm wavelength (S-band) with a beamwidth of 0.92 degrees. The dual-polarimetric capabilities of S-Pol lead to improved precipitation estimates over that available on conventional radars, as well as real-time identification of hydrometeor types. The absolute phase measurements from S-Pol can be used to compute and monitor in real time the low-level humidity by measuring changes in refractive index between fixed ground targets.

NTU XPol Radar

臺大XPol雷達

內容建置中。

內容建置中。

TEAM-R

臺灣實驗用移動式氣象雷達

TEAM-R 全名為「Taiwan Experimental Atmospheric Mobile Radar」(臺灣實驗用移動式氣象雷達),如同中央氣象局在全台灣架設的氣象雷達一樣,主要用於探測三維空間中的降雨或是降雪情況,以獲得即時大範圍的降水資訊;並且由於規格上的設計使得此種氣象雷達可以用較小的體積放置於車上,移動到沒有固定式氣象雷達設置的地點進行觀測實驗,增加觀測資料並減少觀測盲區,當獲得更多氣象資料後即可提供給學術研究或是氣象預報員以增進氣象預報能力。

本雷達為X波段雙偏極化都卜勒雷達,它的都卜勒功能可以測得天氣系統內部的風場結構,而雙偏極化功能則可以使降雨估計的精確度獲得大幅度的提升,由於是放在可移動的載具上,所以可將此雷達架設在地形複雜的區域進行觀測。本雷達採自行設計與組裝,並分別向美國、芬蘭、以色列等國的雷達零組件製造廠分項採購所需的裝備,最後在台灣進行組裝測試。本雷達為因應台灣之地形、道路、天氣等限制,在設計上特別加強了雷達的抗風係數,並採購體積適當的車輛,以便更能深入地形複雜的區域,移動式雷達觀測平台也設計成可分離式,以便於維修與未來車輛汰舊換新時更容易進行替換。

CSU SEA-Pol Radar

科羅拉多州立大學SEA-Pol雷達

內容建置中。

內容建置中。

RCWF

氣象局五分山雷達

五分山氣象雷達站是為彌補花蓮、原高雄兩氣象雷達因受中央山脈阻擋,及地球曲度影響,在臺灣北部海上、陸上所形成的偵測涵蓋空隙而建立。提供對北部颱風嚴密追蹤監視,並改善北部陸上豪雨預報及加強冬季之鋒面偵測,除可減少因氣象災害所造成之損失,並可增進水資源之有效運用。

五分山氣象雷達站採用WSR-88D NEXRAD型調速管都卜勒氣象雷達,為高靈敏度S波段,波長10cm都卜勒雷達系統,能連續於5~10分鐘內提供回波強度(reflectivity)、平均徑向速度(mean radial velocity)及頻譜寬(spectral width)等三種都卜勒雷達基本量之高精確度、高解析度量測,經其氣象演算法產生高達39種不同的雷達氣象及水文分析產品,並以彩色圖形方式顯示提供給氣象預報人員使用。五分山氣象雷達具有高系統靈敏度及解析度,提升雷達資料的可信度;提供降水與晴空等二種雷達觀測作業操作模式,具備自動化觀測作業能力;並透過對雷達資料之演算分析,可進一步地增進預報效率及準確性。五分山氣象雷達於民國九十年四月完成雷達作業軟體升級並加裝雷達寬頻介面設備,目前雷達原始資料已即時傳送回氣象局,並已即時傳送提供防救災等單位使用。更提供國內氣象雷達研究之用。

RCHL

氣象局花蓮雷達

配合「建立臺灣地區都卜勒氣象雷達網計畫」,於站內東北側新建兩層雷達作業大樓,並整修舊有雷達塔及辦公廳舍,整修及新建工程於八十八年三月完工驗收。於民國八十七年十月採購德商Gematronik公司生產的METEOR 1000S型調速管都卜勒氣象雷達儀。於民國九十一年三月四日完成正式驗收,正式投入雷達測報作業。

RCCG

氣象局七股雷達

內容建置中。

內容建置中。

RCKT

氣象局墾丁雷達

民國八十年二月及十二月,氣象局邀集國內外氣象學者召開的兩次「雷達網連研討會」中 ,除建議將高雄雷達站北遷至台南七股外;另建議於墾丁新建一氣象雷達站,以完成全島之都卜勒氣象雷達網。遂自八十七年九月動工興建,至八十九年元月十六日墾丁氣象雷達站正式掛牌成立,經全站同仁辛苦建設,墾丁氣象雷達站已奉准自民國九十年十一月一日起,進行全天候雷達測報作業。

本站位於恆春半島的鵝鑾鼻,地處台灣本島最南端點, 可確實掌握自南方海域侵台的颱風動態。

RCMD

氣象局五分山C波段雷達

內容建置中。

內容建置中。

RCSL/RCNT/RCLY

氣象局樹林/南屯/林園雷達

防災降雨雷達為C波段雷達,坐落於北中南的樹林、南屯、林園,防災降雨雷達建置完成後,可提升大臺北地區、臺中、高屏地區洪水及淹水預警效能,即時觀測資料納入水情及災情監控網,預先掌握各項水情變化,適時啟動防洪作業,強化地方防汛管理及應變指揮調度,更有效、迅速執行防救災應變措施,降低水災災損,使人民生命財產安全獲得保障。

RCMK/RCCK/RCGI

空軍馬公/清泉崗/綠島雷達

空軍馬公/清泉崗/綠島雷達

RCAA

民航局桃園機場雷達

民航局桃園機場雷達。

Vaisala Sounding

Vaisala探空

全世界的高空氣象站會利用探空氣球進行高層大氣的觀測及分析當下的溫度、溼度、風速、風向等大氣條件,並應用在人工預測和數值模式進行天氣預報。全球大約有800個氣象站每天規律地釋放探空氣球進行觀測。根據世界氣象組織的規定,每天施放2次探空氣球,分別為世界協調時間00 UTC及12 UTC。在特別情形下,測站可以在非規定時間進行額外觀測,以應變劇烈天氣造成大氣條件快速改變而使先前觀測不具代表性或是滿足研究需求。軍事以及政府氣象機構,如美國國家氣象局便會規律的施放探空氣球。而每個測站的觀測數據會藉由國際協議與各國分享。

中央氣象局和空軍目前共有7個測站每天進行2次例行性觀測作業,分別為彭佳嶼、板橋、花蓮、馬公、屏東、綠島、東沙島,其使用的儀器皆為Vaisala公司所生產的RS41

MPD

微脈衝差異衰減雷射雷達

The MicroPulse Differential Absorption Lidar is a joint collaboration between NCAR/EOL and Montana State University and has resulted in the development of a network of five compact, field-deployable lidar systems. The MPDs provide continuous monitoring of water vapor in the lower troposphere at 150 m range resolution and 1 to 5 min temporal resolution from 300 m to 4 km above ground level in daytime operation with greater range at night.

MRR

微波降雨雷達

微波降雨雷達(Micro Rain Radar, MRR),其為向上垂直觀測之氣象都卜勒雷達。可觀測大氣中的降水強度、雨滴落速、液態水含量、降雨率及雨滴粒徑分佈。

MRR使用調頻連續波段,在接收散射回來的電磁波訊號後,在訊號處理器中比較頻率的變化,利用傅立葉轉換計算可得目標物的速度,以求雷達觀測體積中雨滴的終端速度。雨滴終端速度的變化與其粒徑大小有關,藉此可得知觀測範圍內的雨滴粒徑譜分佈(Drop Size Distribution,DSD),利用DSD可推得雷達回波、降雨強度與液態水含量等資料。

Distrometer

雨滴譜儀

撞擊式雨滴譜儀(簡稱JWD)

JWD因構造簡易、 觀測方便且售價便宜,研發至今已經四十多年,為目前最為廣泛使用的雨滴譜儀。觀測方式是利用雨滴撞擊感應器的垂直衝量大小換算成雨滴粒徑,脈衝的振幅和降雨直徑有固定的關係。可觀測的雨滴粒徑範圍介於 0.3 mm 至5.6 mm 之間。經由儀器內部處理器換算後,辦别20種不同類別的水滴粒徑。JWD一個雨滴粒徑對應一個雨滴落速。

一維雷射光學式雨滴譜儀(Parsivel)

Parsivel 主要是觀測水象粒子的大小和落速,其觀測方式為利用雨滴通過雷射光束構成的感應區,遮蔽部分的光束造成電壓改變,加上電壓改變的持續時間長度,經過精密的計算即可得知雨滴的粒徑和落速。Parsivel的資料可以觀測的雨滴粒徑範圍介於 0.062 至 24.5 mm,落速則是 0.05 至 20.8 m/s, 分別區分成 32 種不等區間的粒徑和落速類別,提供單位時間的雨滴大小分佈,進而瞭解其降雨形態與降雨強度。

Wind Profiler

剖風儀

Radiometer

輻射儀

Clean Equipments

清除儀器

Equipments Location

觀測儀器位置


Video 1

影片 1

Video 2

影片 2

Video 3

影片 3

Video 4

影片 4

Video 5

影片 5