Downwind Development in a Stationary Band Complex Leading to the Secondary Eyewall Formation in the Simulated Typhoon Soudelor (2015)

Xue-Song Zhu, Hui Yu, and Yuqing Wang

MWR 2022

Introduction

- Intense TCs often develop a secondary eyewall.
- Mechanisms leaded to SEF:
- VRWs: VRWs propagate radially outward to a stagnation radius. The wave kinetic energy is converted to the tangential wind by wave-mean flow interaction. Then, the wind enhance surface enthalpy flux and initiate convection. (Montgomery and Kallenbach 1997; Mong and Emanuel 2003)
- Unbalanced dynamics: BL inflow induced by outer rainband can sharpen the radial wind gradient and create strong supergradient wind. Broadening of the tangential wind induces the unbalanced outflow just above the BL and then develops the axisymmetric secondary eyewall. (Qiu and Tan 2013; Huang et al. 2012; Abarca and Montgomery 2013, 2014)
- Balanced dynamics: Strong diabatic heating in outer rainbands and high environmental RH can broaden the tangential wind outside the primary eyewall. Diabatic heating from stratiform precipitation is more effective in producing a secondary wind maximum than that form convective precipitation. (Wang 2009; Rozoff et al. 201; Moon and Nolan 2010)
- Large scale interaction: Interaction between a TC and a midlatitude westerly jet can produce stratiform precipitation with embedded deep convection and evolve into the secondary eyewall finally. (Dai et al. 2017)

Introduction

- Asymmetric rainbands in SEF:
- Downward and inward development of an intense outer rainband and associated inflow (MDI) led to the associated strong tangential wind above BL. (Wang et al. 2019)
- When reaching the outer edge of the rapid filamentation zone, the tangential wind jet is effective axisymmetrized. The secondary tangential wind maximum and convective ring formed sequentially.
- MDI initiated in the stratiform precipitation region can descend into the BL and trigger an intense updraft. The associated secondary circulation can accelerate the tangential wind. (Didlake et al. 2018; Yu et al. 2021; Wang and Tan 2020)

Introduction

- Not all outer rainbands propagate radially inward and lead to SEF.
- Stationary band complex (SBC): wavenumver-1 asymmetry and quasi-stationary relative to the TC.
- In a statistical analysis of 5-year microwave satellite observations:
- 6 hours prior to SEF: 79% of the 84 SEF cases had SBC.
- 12 hours prior to SEF: SBC becomes more tangential and axisymmetrization. (Vaughan et al. 2020)
- Objective:
- The evolution from spiral rainband to a SBC
- How the SBC contributes to the convective onset in SEF?

WRF Configuration

Version	3.8 .1
Domains	$3, \mathrm{dO}$ and d03 are moving
Grid size	$18,6,2(\mathrm{~km})$
Start time	$2015-08-011200 \mathrm{Z}$
End time	$2019-08-071200 \mathrm{Z}$
Eta levels	20 hPa
Model top Z	$\mathrm{z}<1.5 \mathrm{~km})$
Cumulus Scheme	Kain-Fritsch (d01 only)
Microphysics Scheme	NSSL two-moment
Longwave Scheme	RRTM
Shortwave Scheme	RRTM
PBL Scheme	YSU
Land surface scheme	Noah
DATASET resolution	$0.25^{\circ} \times 0.25^{\circ}$
DATASET	NCEP GFS FNL

All horizontal wind in this study are storm-relative.

Simulation results

(a) Track

Longitude (${ }^{\circ} \mathrm{E}$)

Simulated track and JMA best track
(b) Intensity

Time (h)
DD/HH(UTC)

	Simulation	Best-track
10-m Vmax	\ldots.	-
Sea level P	\ldots.	-

Plan view of simulated Soudelor

Z = 3 km
Colored: reflectivity (dBZ)
Arrow: VWS (m/s)
Circle: 30, 90, 150 km from TC center

Vertical wind shear (VWS): Difference between 200 and 850 hPa of averaged wind speed in $r=200-800 \mathrm{~km}$ annular area.

Plan view of simulated Soudelor

Colored: Brightness temperature (K) Arrow: VWS (m/s)

Vertical wind shear (VWS): Difference between 200 and 850 hPa of averaged wind speed in $r=200-800 \mathrm{~km}$ annular area.

Azimuthal mean

Azimuthal-mean

Colored: w (m/s)
Contour: v (m/s)
Arrow: u, w (m/s)

Azimuthal mean

Azimuthal-mean

Colored: $\mathrm{w}(\mathrm{m} / \mathrm{s})$ at $\mathrm{z}=3-7 \mathrm{~km}$
Contour: $\mathrm{v}(\mathrm{m} / \mathrm{s})$ at $\mathrm{z}=0.6 \mathrm{~km}$

Middle-level updraft > $0.5 \mathrm{~m} / \mathrm{s}$ outside the eyewall implies the strengthening of rainband convection. (Rozoff et al. 2012)
(a) Azimuthal-mean W and V

(b) W at $\mathrm{R}=60-80 \mathrm{~km}$

Contour-clockwise

Analysis of SBC (53h) $)_{\text {vws }}$

Color: dBZ at $\mathrm{z}=3 \mathrm{~km}$

Color: divergence at $\mathrm{z}=3 \mathrm{~km}$ Contour: w at $\mathrm{z}=3-7 \mathrm{~km}$

Color: w at $\mathrm{z}=3-7 \mathrm{~km}$

Color: u at $\mathrm{z}=0.3 \mathrm{~km}$ Contour: w at $\mathrm{z}=3-7 \mathrm{~km}$

Analysis of SBC (54h) $)_{\text {vws }}$

Color: dBZ at $\mathrm{z}=3 \mathrm{~km}$

Color: divergence at $\mathrm{z}=3 \mathrm{~km}$ Contour: w at $\mathrm{z}=3-7 \mathrm{~km}$

Color: w at $\mathrm{z}=3-7 \mathrm{~km}$

Color: u at $\mathrm{z}=0.3 \mathrm{~km}$ Contour: w at $\mathrm{z}=3-7 \mathrm{~km}$

Analysis of SBC (55h) $)_{\text {vws }}$

Color: dBZ at $\mathrm{z}=3 \mathrm{~km}$

Color: divergence at $\mathrm{z}=3 \mathrm{~km}$ Contour: w at $\mathrm{z}=3-7 \mathrm{~km}$

Color: u at $\mathrm{z}=0.3 \mathrm{~km}$ Contour: w at $z=3-7 \mathrm{~km}$

Color: w at $\mathrm{z}=3-7 \mathrm{~km}$

Cross section of SBC

Line-averaged Color: dBZ
Vector: u, w
Contour: w
Contour: v'

Cross section of SBC

Line-averaged
Color: θ_{e}
Vector: u, w
Contour: qr
Contour: qv
Dashed Contour: RH
(b) SR_54

(c) IR_53
(d) IR_54

radially inward direction
(e) $\mathrm{SBC}_{-} \mathrm{D}$

Supergradient force

Line-averaged
Color: divergence
Vector: u, w
Contour: w
Contour: AF

$$
\mathrm{AF}=f v+\frac{v^{2}}{r}-\frac{1}{\rho} \frac{\partial p}{\partial r},
$$

Agradient force (AF) $A F>0$ supergradient wind $A F<0$ subgradient wind

(c) U

(d) AF

Propagation speed of IR

Average radial propagation speed of IR: $2.4 \mathrm{~m} / \mathrm{s} \quad 65 \mathrm{~km}$-> 73 km -> 82 km
Average tangential propagation speed of IR: $17.3 \mathrm{~m} / \mathrm{s}$ (43% of tangential wind)
Low-level outflow: $1.6 \mathrm{~m} / \mathrm{s}$
Tangential propagation speed associated with VRWs: 60 ~ 80\% of tangential wind

Budget analysis of AF

$$
\mathrm{AF}=\frac{f v+\frac{v^{2}}{r}-\frac{1}{\rho} \frac{\partial p}{\partial r},}{\text { AF_O }}
$$

Contour: w at $\mathrm{z}=1 \mathrm{~km}$
Red dot: max dBZ

Budget analysis of AF

Cold pool formation in the downwind propagation

$$
\bar{\phi}=\operatorname{mean}\left(\phi_{-12.5}, \phi_{+12.5}\right)
$$

Color: Asy - u
Contour: \bar{u}
Asy - v
\bar{v}
Asy - θ
$\overline{\theta_{e}}$

Cold pool formation in the downwind propagation

Average between $\mathrm{z}=1-3 \mathrm{~km}$ Color: 5x hourly-change θ_{e} Circles: 30, 90, 150 km

(b) $54-55 \mathrm{~h}$

Average between $\theta=210-250^{\circ}$ (cross rainband) Color: θ_{e}

Cold pool formation in the downwind propagation

Average between $\theta=210-250^{\circ}$ (cross rainband)
Color: Asy - θ_{e}
Contour: u
Contour: RH

$$
\mathrm{T}=54 \mathrm{hr}
$$

Vector: u, w

$210-250^{\circ}$ sector mean at 55 h
$\mathrm{T}=55 \mathrm{hr}$

Color: Asy - PGF Contour: u
Contour: inward PGF Vector: u, w

Cold pool dynamics in convection enhancement

Line-averaged
Color: θ difference
Contour: w
Vector: cross-band, vertical wind
$\Delta \theta=\theta_{\min }-\theta_{0}$ $\theta_{0}: \theta$ before cold pool reached (average within $25-\mathrm{km}$ radial distance in the outward side of rainband)
 wind

θ difference

Cold pool formation in the downwind propagation

Cold pool radial speed:

$$
V_{\mathrm{cp}}=k \sqrt{\frac{g H\left(\rho_{c}-\rho_{e}\right)}{\rho_{e}}}+b V_{c}
$$

ρ_{c} : cold pool density
ρ_{e} : environmental density
$k: 0.9$
$b: 0.6$

	SR_54	SBC_D
$H(\mathrm{~km})$	4.0	5.5
$\rho_{c}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$	1.132	1.128
$\rho_{e}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$	1.129	1.123
$V_{c}(\mathrm{~m} / \mathrm{s})$	2.88	-13.26
mean $V_{c p}(\mathrm{~m} / \mathrm{s})$	-5.19	

(b) $54-55 \mathrm{~h}$

(c) Averaged in $\mathrm{R}=90-115 \mathrm{~km}$

(d) Averaged in $210-250^{\circ}$

Low- θ_{e} inward propagation:
7.2 m/s
(a) Initiation of inner and secondary rainbands

(b) Outward and downwind propagation of related rainbands

(c) Organization of SBC with convection enhanced in the downwind sector

Stationary band complex (SBC)

Cross section line for (d)
(d) A dynamical balance for convection enhancement
$\underbrace{\text { Eye }}_{\text {Cross-band wind }}$

