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Introduction

 ERCis important because it can lead to increases in both storm size and
integrated kinetic energy. (Sitkowski et al., 2011)

* Concentric eyewalls (CE) duration: from the formation of an outer eyewall to the
complete decay of an inner eyewall.

e Short-lived CE: The CE of TC Lekima (2001) and TC Andrew (1992) sustained for only 6 hours
from radar observations. (Kuo et al., 2004; Willoughby and Black, 1996)

* Average ERC durations from aircraft data: 36 hours (Sitkowski et a., 2011)
e Average ERC durations from microwave satellite data: 17.5 hours

e CEs with durations longer than 20 hr tends to have a larger moat width and larger
outer eyewall width.

* The western North Pacific (WNP) has more long-lived CEs than in Atlantic (ATL)
and in the eastern North Pacific (ENP). (23% for WNP, but 5% for ATL)

(Yang et al., 2021)



Features of the Iong-lived CEs

e TC Soulik (2013) had 2 long-lived CE
episodes. The first one sustained for
25 hours, and the second one
sustained for 34 hours. A large moat
size and outer eyewall width were

present in both CE periods.
(Yang et al., 2013)

e TC Lekima (2019):

* more than 30 hours CE duration
Traveling distance about 600 km

Moat size: 40 km

Inner eyewall radius: 10 km

Strong convections in the inner eyewall
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Benefits of large moat size

* Outer eyewall needs more time to contract in a wider distance.

* Barotropic instability, which causes the inner eyewall spindown but the outer

eyewall spinup, grow slowly in a wide moat with low radial vorticity gradient.
(Kossin et al., 2000)

 Partial blockage of moisture supply due to asymmetry may prolong the CE
structure. A wide moat size allows more moisture to be pick up from the sea
surface. (Tsujino et al., 2017)

* The subsidence warming, which is unfavorable for convections, in the moat is
enhance by the outer eyewall convection in the Sawyer-Eliassen diagnoses. A large
moat size can weaken this effect. (Rozoff et al., 2008)



Introduction

 What may control the size of CE TCs?
* A vortex-skirt TC with sufficient strength favor the formation of CE storm with large moat. (Kuo
et al., 2008)
* The size of long-lived CE storms is larger in warm and normal episodes of the ENSO than that in
cold episodes of the ENSO in WNP. (Yang et al., 2015)

* BL dynamic is important to TC intensity.

* From the aircraft observations, the radial inflow decreased from 22 to 0 m/s in a few
kilometers in Hurricane Hugo (1990). Williams et al. (2013) used a slab boundary layer (SBL)
model to show the nonlinear radial advection produce a shock-like structure. It was also

observed and can produce large vorticity.

* The shock-like structure was reproduced in the 500-m resolution simulation for TC Haiyan
(2013). This structure can produce over 200 PVU of PV tower. (Tsujino and Kuo, 2020)

* The aircraft observations of Hurricane Patricia (2015) also reported that hundreds of PVU of PV
tower existed during Rl period. (Martinez et al., 2019)



Introduction

* The slab boundary layer model (SBL model):
* a model which considers BL only
* low degrees of freedom (simple)
e can capture the nonlinear radial advection effect in a narrow region (e.g., moat)

* This paper try to find:
* The relationship among maximum inner eyewall updraft (IEP), moat width,
radius of inner eyewall, and maximum wind speed.

* The positively contribution of a large moat to the long-lived CE TCs.



Slab-Boundary Layder Model (1-D)
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Experiment Design
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r, = 10,20, 30, 40,50 (km)
v, = 10, 20,30, 40,50, 60 (km)
d = 10,20, 30, 40, 50, 60, 70, 80,90, 100 (km)

Table 1
Parameters for the Experiments
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Figure 2 A 4
B 10 60 10 20 2
C |
Figure 3 A 30
B 10 60 10 20 2
C 10
Figure 4 A 10
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Figure 5 A 30
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Figure 6 A 20
B 15 60 10 20 2
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Simulation result

Experiments:

r, = 10,20, 30, 40,50 (km)

vy = 10,20, 30,40, 50, 60 (km)

d =10, 20,30,40,50,60,70,80,90,100 (km)

The moat size becomes larger, the inflow
becomes larger. But the inflow is
saturated when the moat size is large
enough. (PGF is too small)

Constrain: \/v,,/d > 0.03

Relationship:
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Simulation result

w* = Wi /vy
u* =u/v,
d*={d/c

By work = force X distance:
d* ~u*’
u* ~ W*

w* ~Vd*

In dimensional form:
Win/Vm ~ ({d/c)O.S ~ (Umd/rm)o's

Wi, ~ 01570505
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Simulation result
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Observation

In dimensional form:
w* ~vd*
Win/VUm ~ ({d/c)o's
Win ~ Um((d/c)o's

Points: aircraft observations (tangential wind
maximum) based on previous papers.

CE formation: v,, > 40 m/s and %d > 4
ERC: &2

c
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TC Lekima (2019):

CE formation: v,,, = 65m/s, %d =10

ERC: Uy, = 50 m/s,%d =7
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Microwave satellite observation of TCs in WNP

during 1997-2014
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Summary

* Long-lived CE tends to have larger moat size and outer eyewall width. The WNP
has far more long-lived CE than in ATL and ENP.

e Results of SBL model:

* The inflow reduced to O when it passed through the outer eyewall and reaccelerated in the
moat by PGF.

* The IEP is not sensitive to parameters of outer eyewall.
e Both the large moat size and large PGF can enhance inflow to a large IEP.

* The scaling low of IEP: w;,, ~ v,,4/{d/c ~ v1°>1,,0-5d 05

* Phase diagram:
 |EP is a function of v,,, and d*.
* CE forms when v,,, >40 m/s and d* > 4.

* ERC s the process that reduces both intensity (v,,,) and dimensionless moat (d*) and leads to
demise the IEP and inner eyewall.



