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Introduction

* Tropical cyclone (TC) rainbands contain convective and stratiform features that
can involve interactions with the BL, eyewall, and environment. The interactions
can lead to large impacts on TC evolutions:

1. Rainbands can enlarge PV that spirals into the core and cause TCs to strengthen. (Franklin et
al., 2006; May and Holland, 1999)

2. Rainband downdrafts by precipitation and compensating subsidence can reduce the BL 6,
air feeding into the eyewall. (e.g., Alland et al., 20213; etc.)

3. Diabatic heating in rainbands can produce a local pressure minimum, which reduces the
inflow to the eyewall. (Powell, 1990a; Wang, 2009)

4. Rainband can accelerate the local tangential wind and cause the expandsion of the wind
field and SEF. (e.g., Bell et al., 2012; etc.)



Introduction

* The presence of sufficient environmental vertical wind shear (VWS) can let the

rainbain turn into a broad, organized, asymmetric stationary band complex (SBC).
(Willoughby et al., 1984)

e SBCin DR and UR:

* Low-level inflow -> intense updraft -> outflow in mid-levels (5-8 km)
* Local tangential wind jets through stretching and tilting.
* Downdraft at z = 2-4 km by precipitation drag

* Downdraft at z = 6-8 km at the inner edge of rainband
(Barnes et al., 1983; Hence and Houze, 2008; Powell, 1990a, 1990b; Samsury and Zipser, 1995; Didlake and Houze, 2009)

e SBCin UL and DL:

* A broad stratiform precipitation
* Mesoscale descending inflow (MDI), which extends to BL, forced by midlevel latent cooling

* New convection by cold pool form by MDI
(Didlake and Houze, 2013b; Didlake et al., 2018; Yu and Didlake, 2019; Yu et al., 2021; Li and Dai, 2020)



Introduction

e Rainband convection varies with radius.

* Convective updrafts at smaller radii have a shallower vertical extent than those at larger radii
due to lower CAPE and stronger filamentation at smaller radii.

* Distant rainbands are buoyancy-driven and propagate with a locally generated cold pool.
(Bogner et al., 2000; Li and Fang, 2019; Molinari et al., 2013; Moon and Nolan, 2015; Tang et al., 2014)

Limitations of the previous studies:

* The simulations of case studies did not capture the variety of rainband features that occur in
nature. (e.g., Barnes and Stossmeister, 1986; etc.)

* Azimuthal average was usually used in the analyses. It obscures smaller-scale features
important for TC evolution. (e.g., Reasor et al., 2013)

* Some TC studies capture the convective-scale features across a few TC cases.



Introduction

* The goal of this study:
* Understand the overall role of rainbands on TC evolution.
* Understand the different rainband structures and processes that can occur.
* Better understand the variety of rainband updraft structures along TC (= 33 m/s).
* Explore the detailed structure of the observed rainband convection.

* This study analyzes the convective-scale structure of TC rainbands by 10 years of
airborne Doppler radar observations from Atlantic and central Pacific basin
hurricanes.

* This study identifies the strongest rainband updrafts in each storm and focuses on
their updrafts, convective-scale kinematic, and reflectivity structures by statistical
analyses.



Data and Method

Airborne radar observations

 NOAA WP-3D Tail Doppler radar (TDR)
e X-band
* The beam oriented 20° fore and aft
* 3D wind fields were retrieved by the Doppler wind
e Cartesian grid with dx =2 km and dz = 0.5 km

* 59 missions across 12 hurricane-strength TCs
* From 2010 to 2019

The 6-hr maximum wind speeds were from NOAA NHC HURDAT?2 dataset.

The storm centers were determined by TDR data.

The TDR data were interpolated to the grid size of (dz, dO,dr) = (0.5km, 2°, 2km).
The storm-relative wind field were used in all analyses.

To account for varying storm size, the radial is normalized by the RMW of each mission.
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Analyses in an axisymmetric framework

Updraft size, strength, and location

* The frequency of updrafts
decreases with increasing radius.

* A peaked distribution of base
altitude is present at 2-4 RMW, and
the distribution flattens at larger
radii.

* Top altitude are largely above 6 km.

* Depth increases with increasing
radius.

e Strength mainly distributes at 1-2
m/s. The relative frequency of 2-3
m/s at 4-6 RMW increases.
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Analyses in an asymmetric framework
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Analyses in an asymmetric framework

(a) B vs. Base Altitude

Updraft size, strength, and location

* The mean base altitude at
downshear is highest.

* The mean top altitudes and mean
depth at downshear quadrants are
higher than those in upshear
guadrants.
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Total kinematics of updraft elements

Quadrant-averaged composites
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Total kinematics of updraft elements

Quadrant-averaged composites
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Total kinematics of updraft elements

Classification of Updraft Circulation Patterns
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Total kinematics of updraft elements

Classification of Updraft Circulation Patterns
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Total kinematics of updraft elements

Azimuthal Variations in Updraft Size, Location, and Circulation Type
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Total kinematics of updraft elements

Azimuthal Variations in Updraft Size, Location, and Circulation Type
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Discussions

* The upper-level radial flow try to match the wind shear vector. Convections with
upper-level inflow (type 1 and 4) appear frequently at the upshear side, and
those with upper-level outflow (type 2 and 3) appear frequently at the
downshear side.

* At downshear side, the low-level inflow of convections (type 3) matched the low-
level inflow layer in the storm-centered composites. The low-level outflow of
convections (type2) matched the outflow above the low-level inflow.

* At upshear side, the low-level outflow
of convections (type 4) matched the
supergradient outflow layeratz=1"~
2.5 km. The low-level inflow of
convections (type 1) may occur above
the supergradient outflow layer.
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Total kinematics of updraft elements

Azimuthal Variations in Updraft Size, Location, and Circulation Type
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Total kinematics of updraft elements

Azimuthal Variations in Updraft Size, Location, and Circulation Type
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Conclusions

* This study examine rainband convective updrafts’ kinematic and reflectivity
characteristics observed by airborne Doppler radar across 2010-2019.

e Rainband updrafts become deeper and stronger with increasing radius due to
increasing CAPE with radius.

e Rainband updradts are more (less) frequent and deeper (shallower) in the
downshear (upshear) quadrants.

* The radial flow at the updraft base and top are dominated by vortex-scale and
shear-induced background flow:

1. Low-level inflow (outflow) and mid-level outflow (inflow) at the downshear (upshear)
guadrant

2. Decreasing depth in low-level inflow from DR to DL



Conclusions

* DR: It contains out-up-in flow,
which is most frequent, deepest,
and strongest along other types of
updrafts.

 DL: Outflows exist above the
updrafts. The reflectivity has
convective features.

* UL: Inflow exist above the updrafts.

Updraft bases connect with inflow
or outflow at different height.

* UR: The radial flows vary largely at
the base and top of the updrafts.
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