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1. Introduction
a. The characteristics of deep convection in Southeast Asia

➢ It can cause extreme rainfall intensity and result in devastating impacts 

(flooding, landslide).

➢ It plays an active part in the dynamics of the larger-scale atmospheric phenomena 

in this region.

➢ It can be influenced by the systems across a range of time and space scales. 

(El Nino-southern oscillation, Madden-Julian oscillation, cold surges, equatorial waves, 

tropical cyclones, and land-sea breeze circulations)



b. The issues of NWP models

1. Introduction

➢ Global models which rely on convection parameterizations cannot forecast tropical 

rainfall features accurately (e.g. diurnal cycle, MJO, and equatorial waves).

➢ Increasing model resolution can simulate deep convection explicitly.

➢ The current operational “convection permitting (CP)” model (resolution from 1-10 km) 

can only partially resolve deep convection.

➢ CP models perform better than convection parameterizations in convection initiation, 

diurnal cycle, and large-scale modes.

➢ There is a trade-off between resolution, model domain size, and ensemble size within 

real-time operational NWP routine.



c. The issues of ensemble forecasts

1. Introduction

➢ Forecast uncertainties are associated with model physics, initial conditions and boundary 

conditions.

➢ Ensemble forecasts can account for model uncertainty.

➢ Several studies have shown the benefits of ensemble forecasts to high impact weather in 

the extratropics. However, there are fewer studies examining the extreme rainfall in the 

tropics, especially in Southeast Asia.

➢ Porson et al. (2019) and Sun et al. (2020) evaluate the CP ensemble forecasts around 

Singapore but in a relatively small area (400 km × 400 km).



d. The aim of this study

1. Introduction

➢ Quantify the usefulness of CP ensemble forecasts in Southeast Asia.

➢ Three domains are examined, including peninsular Malaysia, Java and the Philippines.

➢ The issues include the precipitation, the scale dependence of forecast skill, and the role 

of diurnal cycle in forecast skill.

➢ Besides, the spread of the skill between the ensemble members are also verified.



2. Data
a. Ensemble forecasts – Met Office Unified Model (MetUM)

➢ 18 ensemble members perturbed from:

ensemble transform Kalman filter (ETKF) for IC 

stochastic parameterization scheme

➢ Initialized twice daily (00Z, 12Z) and forecast 120 hours

from Oct. 2018 to Mar. 2019

➢ 3 resolutions: 2.2 km, 4.5 km, and 8.8 km 

➢ The 8.8 km forecasts include parameterized run (GA)

➢ Regrid to a common 9-km grid before analysis

➢ 3 domains: 

Malaysia, Indonesia, and the Philippines



2. Data
b. Observation – GPM-IMERG

➢ GPM-IMERG: Integrated Multisatellite Retrievals for Global Precipitation Mission

➢ The product used is at the resolution of 0.1° in space and half hour in time which combines 

precipitation estimates from GPM satellites and Global Precipitation Climatology Centre (GPCC) 

rain gauges.

➢ The dataset are abbreviated as “GPM” in this study.

➢ The GPM precipitation is also interpolated to a common 9-km grid.

➢ N. De Silva et al. (2021) finds that GPM estimated precipitation is similar to local rain gauge for 

percentiles between 85th and 95th .



3. Methods
a. Fractions skill score (FSS, Roberts and Lean, 2008)

➢ Concept: Compare two gridded fields and measure the degree of 

correspondence as a function of spatial scale.

(Roberts, N. and H. Lean, 2008)

1. Select a rainfall threshold “q”

2. Select a spatial scale “N”

3. Calculate the portion exceeding threshold “q” within 𝑵 × 𝑵

neighborhood, called fraction.

4. After the calculation of each grid point, the fraction fields 𝑶 𝒏 and 

𝑴 𝒏 are calculated.

➢ For each grid point:

𝑵 = 𝟏,𝑵 = 𝟓



3. Methods
a. Fractions skill score (FSS, Roberts and Lean, 2008)

(Roberts, N. and H. Lean, 2008)
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3. Methods
a. Fractions skill score (FSS, Roberts and Lean, 2008)

➢ Three types of FSS:

1. eFSS: ensemble-aggregated FSS (Dey et al. 2014)

The purpose is to summarize the performance of ensemble members as a whole.
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3. Methods
a. Fractions skill score (FSS, Roberts and Lean, 2008)

➢ Three types of FSS:

2. dFSS: dispersion FSS (Rezacova et al. 2009; Dey et al. 2014)

The purpose is to evaluate the ensemble spread of performance.

Replace the observation by a control member of the ensemble. (Replace the “O” in the formula.)
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3. Methods
a. Fractions skill score (FSS, Roberts and Lean, 2008)

➢ Three types of FSS:

3. LFSS: localized FSS (Woodhams et al. 2018)

The purpose is to evaluate the spatial distribution of FSS.
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3. Methods
b. Persistence forecast and shifted forecast

➢ Three variations of forecast over Oct. 2018 ~ Mar. 2019

1. Standard CP ensemble forecasts:

2. Shifted ensemble forecasts: 

- The forecast is verified against observations that occur a day later than the actual forecast 

verification times.

- To test how much potential predictability comes from the similarity of the observed diurnal cycle

from one day to the next. 

Day 0 Day 1 Day 3Day 2 Day 5Day 4

Day 1 Day 3Day 2 Day 5Day 4

Observation

Forecast

Day 0 Day 1 Day 3Day 2 Day 5Day 4

Day 1 Day 3Day 2 Day 5Day 4

Observation

Forecast

Day 6



3. Methods
b. Persistence forecast and shifted forecast

➢ Three variations of forecast over Oct. 2018 ~ Mar. 2019

3. Persistence forecasts:

- Use no model data but instead use GPM precipitation from the day prior to forecast initialization 

and replicate for every 24 hours in the 120-h forecast period.

- To act as a benchmark for how skillful the ensemble forecasts are.

Day 0 Day 1 Day 3Day 2 Day 5Day 4Observation

Forecast Day 0Day 0 Day 0 Day 0 Day 0



4. Results
a. Rainfall climatology and 4.5-km forecast bias

➢ Pronounced diurnal variation are observed in Malaysia and Indonesia.

➢ Each domain has 2 peaks in rainfall: 08Z and 20Z (03~04 LST and 15~16 LST)

➢ The peaks correspond to the rainfall over land in the evening and over sea in the morning.

➢ The differences between two peaks in model are larger than the GPM observation, 

which is caused by the underestimation of rainfall over ocean.

➢ The forecasts tend to underestimate the 3-hour rainfall but overestimate the 24-hour 

precipitation.



4. Results
a. Rainfall climatology and 4.5-km forecast bias

➢ The ensemble members tend to underestimate the 95th rainfall but overestimate the 99th

rainfall for the 3-h precipitation.

➢ Other studies also find that the CP model 

underestimate low rainfall intensities and 

overestimate high intensities in other 

regions. 

(Woodhams et al. 2018; Kendon et al. 2012)

➢ GPM is known to underestimate heavy 

rainfall events, which may also cause the 

“overestimation” of model rainfall. 

(Tan and Duan 2017; Sunikumar et al. 2019)



4. Results
a. Rainfall climatology and 4.5-km forecast bias

95th percentile for 24-hour precipitation 

between GPM and 4.5-km forecast:

➢ The highest rainfall in GPM occur over ocean.

➢ The highest rainfall in model occur over 

mountainous regions of Sumatra and Java.

➢ The rainfall off the west coast of Sumatra 

decrease rapidly as the lead time increases 

(fig. d, g, j). 

➢ The rainfall amount in the Philippines domain is 

well forecasted compared to the other two.



4. Results
b. Skill of 4.5-km ensemble forecasts of daily precipitation accumulations

eFSS of 24-hour precipitation exceeding 95th percentile 

in 4.5-km forecasts:

➢ The forecasts are considered skillful if eFSS > 0.5 

(on the right of the red line).

➢ Skill decreases as lead time increases.

➢ The skill in the Philippines domain is higher than the 

other two.

➢ The skill is likely to vary with both location (land, 

sea) and time of a day (diurnal cycle), so they are 

further examined in the following.



4. Results
c. The role of the diurnal cycle in 4.5-km forecast skill

95th percentile of 12-15 UTC 3-hour rainfall (local evening):

➢ GPM:

1. The highest values are over Sumatra and Borneo.

2. The rainfall over Sumatra is located at the mountains 

and the west coast.

3. The rainfall over Java, peninsular Malaysia, and the 

Philippines are weaker.



4. Results
c. The role of the diurnal cycle in 4.5-km forecast skill

95th percentile of 12-15 UTC 3-hour rainfall (local evening):

➢ Model: 

1. The rainfall over Sumatra is concentrated at the 

northwest and the precipitation off the west coast is 

not captured.

2. Rainfall over the ocean decreases more apparent 

than that over the land as the lead time increases.

3. The overall spatial pattern of the precipitation remains 

the same as the lead time increases.



4. Results
c. The role of the diurnal cycle in 4.5-km forecast skill

eFSS of 3-hour accumulated rainfall exceeding 95th percentile:

➢ The shading is the eFSS for standard forecast, but the 

skillful standards (eFSS=0.5) are shown for all three 

forecast variations.

➢ For the red line (standard forecast):

1. The skill is strongly tied to the diurnal cycle in the 

Malaysia (fig. a) and Indonesia (fig. b) domain.

2. The skill tends to be largest in the daytime when rainfall 

is over land and smallest at night when precipitation is 

offshore.

3. The skill decrease as the lead time increases.



4. Results
c. The role of the diurnal cycle in 4.5-km forecast skill

eFSS of 3-hour accumulated rainfall exceeding 95th percentile:

➢ For the green line (persistent forecast):

1. To test how much skill is driven simply by diurnal 

variations and how much is added by dynamical 

ensemble forecast (red line).

2. The standard ensemble forecast (red line) is more skillful 

than the persistence forecast (green line)

3. The ensemble forecast contains more information about 

the weather occurring in the future.



4. Results
c. The role of the diurnal cycle in 4.5-km forecast skill

eFSS of 3-hour accumulated rainfall exceeding 95th percentile:

➢ For the blue line (shifted forecast):

1. To test how much predictability comes from the diurnal 

cycle in the current flow regime.

2. The standard forecast performs better, which indicates 

some forecast skill is associated with the phenomena in 

multi-day time scale captured by the model.

3. The shifted forecast (blue line) tends to move toward 

standard forecast (red line) as the lead time increase.



4. Results
c. The role of the diurnal cycle in 4.5-km forecast skill

LFSS of 3-hour accumulated rainfall exceeding 95th

percentile in the evening (N=72km):

➢ The aim is to find the spatial distribution of skill 

across the full domain.

➢ Skill tends to be located over land where the 

forecast has most precipitation during the evening 

for the Malaysia and Indonesia domains.

➢ The Philippines domain shows higher skill over 

ocean due to the stronger impact from synoptic 

scale variability and weaker diurnal cycle.



4. Results
c. The role of the diurnal cycle in 4.5-km forecast skill

LFSS of 3-hour accumulated rainfall exceeding 95th

percentile over the land and ocean (N=72km):

➢ Peaks in skill occur at the time when the rainfall 

is heavier in the ocean or the land.

➢ There is much less skill over ocean in the 

Malaysia and Indonesia domains.

➢ Most skill comes from precipitation that is 

constrained by topography.



4. Results
d. Ensemble spread-skill relationship for 4.5-km forecasts

➢ dFSS (Dey et al. 2014) is used to assess skill 

differences between ensemble members, 

which is “ensemble spread” of forecast skill.

Conditions Meaning

𝑑𝐹𝑆𝑆 > 𝑒𝐹𝑆𝑆 Underspread

𝑑𝐹𝑆𝑆 < 𝑒𝐹𝑆𝑆 Overspread

➢ 𝒅𝑭𝑺𝑺 > 𝒆𝑭𝑺𝑺 for all domains, which indicates 

the ensemble members are too similar to one 

another.

➢ The spread also varies with diurnal cycle and is 

smallest (largest dFSS) in the local evening.



4. Results
e. The role of resolution and convection parameterization in forecast skill and spread

➢ Resolution tends to play a minor role in forecast skill 

and ensemble spread.

➢ GA ensemble shows less skill in Malaysia and 

Indonesia domains, in which the rainfall rely more 

on the diurnal cycle.

➢ The Indonesia rainfall peaks in GA ensemble occur a 

few hours earlier, which cause the skill decreasing 

and followed by a increasing in local evening.

➢ The rainfall in coarser resolution ensemble (8.8 km) 

tend to be smaller, which cannot be evaluated by 

the percentile-based FSS evaluation.



4. Results
e. The role of resolution and convection parameterization in forecast skill and spread

➢ The GA ensemble performs better than CP ensemble 

in the Philippines domain. 

➢ The precipitation patterns at the Philippines are 

influenced by larger-scale phenomena.

➢ The ensemble spread is smaller in the local evening 

for both CP and GA ensembles.

➢ The spread in the evening is smaller in GA ensemble, 

which may be caused by the parameterization used.



5. Summary and conclusions

1. In this study, the skill of convection permitting (CP) ensemble forecasts is evaluated in the 

domains covering Malaysia, Indonesia, and the Philippines by fractions skill score (FSS).

2. This study mainly focuses on the impacts of diurnal cycle on the skill and spread of the ensemble 

rainfall forecast.

3. The diurnal cycle plays an important role in the domains of Malaysia and Indonesia.

4. The forecasts perform better over the land than over the ocean.

5. The comparisons between the standard forecasts, the shifted forecasts and the persistence

forecasts conclude that the ensemble forecast systems can capture the scopes beyond the 

diurnal cycle.



5. Summary and conclusions

6. The skill decreases as the lead time increases.

7. The resolution plays a fairly small role in the skill of ensemble rainfall forecasts.

8. The convection permitting (CP) ensemble performs better than the parameterized ensemble 

(GA ensemble) in the precipitation that is highly associated with diurnal cycle.

9. Although the forecast skill evaluated by FSS are similar across all resolutions, the percentile-based

method can only describe the spatial patterns of the rainfall areas.

10. The ensemble spread (dFSS) is 59%, 61%, and 33% less than the ensemble mean forecast error 

(eFSS) on average for Malaysia, Indonesia, and the Philippines domains, respectively.


