The Spatiotemporal Characteristics of Near-Surface Water Vapor in a Coastal Region Revealed from Radar-Derived Refractivity

YA-CHIEN FENG,^{a,b} HSIU-WEI HSU,^c TAMMY M. WECKWERTH,^b PAY-LIAM LIN,^c YU-CHIENG LIOU,^c AND TAI-CHI CHEN WANG^c

^a Advanced Study Program, National Center for Atmospheric Research, Boulder, Colorado
 ^b Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, Colorado
 ^c National Central University, Taoyuan City, Taiwan

Outline

- 2. Data and methodology
- 3. The spatiotemporal characteristics of the near-surface refractivity fields
- 4. Case studies of diurnal evolution refractivity
- 5. Discussion of the diurnal variation of refractivity
- 6. Conclusions

- Solar heating/long wave radiation cooling → pressure gradient → *land/sea breeze*
- Land/sea breeze can interact with:
 - 1. prevailing large-scale flow
 - 2. topography or rivers induced flow
 - 3. storm cold pools and outflow
 - 4. heterogeneous land use
 - 5. urban heat island effects
- The intertwined factors result in complex *moisture distributions*.
- The lack of spatial and temporal surface observations limits the ability to represent the *moisture variability*.

- The moisture flux convergence by sea breeze is crucial to the development and growth afternoon thunderstorm under weak synoptic-scale forcing.
- Moisture convergence usually occurs at *foothills* around noon.
- Rainfall frequently peak in *midafternoon* along the *lower slopes* of mountains.
- Warmer ($\Delta T = 0.5 \sim 1.5^{\circ}$ C) and more moist ($\Delta T_d = 0.5 \sim 2^{\circ}$ C) conditions are observed before convections occurred.
- Investigating the complex *interaction between low-level moisture and local circulations* are important to improve forecasts on diurnal precipitation.

- High-spatiotemporal-resolution observations are necessary to sample highly variable moisture anomalies.
- Current low-level moisture observations are in the forms of:
 - **1.** *Point* observation (*surface stations, aircraft*)
 - 2. Profile observation (radiosonde, radiometers, space-based GPS receivers)
 - 3. Areal observations (satellites), limited capability with cloud and precipitation
- *Refractivity* fields estimated by ground-based weather *radars* can provide highspatiotemporal-resolution low-level moisture distribution.

- **NCAR S-Pol** is used during *TiMREX/SoWMEX* in southwestern Taiwan in 2008.
- The refractivity retrieval methodology is based on *Fabry (2004)* and *Fabry and Pettet (2002)*
- The temporal resolution of retrieved refractivity is 7.5 min.
- The scientific questions:
 - **1.** What are the characteristics of the *refractivity (moisture) fields* in a moisture rich environment across various temporal scales?
 - 2. How do these moisture fields *evolve* with the atmospheric processes, terrain, and heterogeneous land use?

2. Data and methodology

- Domain: southwestern Taiwan
- **Coastline**: NW-SE oriented
- Mountain: N-S oriented

■ Land-use:

urban, rural dryland, and irrigated cropland

2. Data and methodology

a. The relation ship between refractivity and moisture

■ Refractivity N: (Bean and Dutton, 1966)

- The evolving moisture e dominates the temporal change of N.
- The effect of *temperature T* is slightly higher at inland stations due to larger diurnal temperature change.

2. Data and methodology

b. Data quality of refractivity

■ The retrieved refractivity is compared with that calculated from the surface

observations based on $\mathbf{N} = 77.6 \frac{P}{T} + 373000 \frac{e}{T^2}$.

The correlation coefficients (CC) over the month at 4 stations:

Station	Kaohsiung	Shiwei	Fenhua	ISS
CC	0.82	0.94	0.90	0.89

Mean absolute difference of N : 4.1 N-unit, i.e. 0.8 g/kg in q (Hsu, 2019)

The bias may come from *height difference* between the surface measurement (2m) and the radar retrieval (~20m).

a. The average spatial distribution of refractivity

- The refractivity (moisture) gradient is perpendicular to the *coastline*.
- The gradient is $\sim 10 N unit/30 km$.
- High N extends further inland in the northern urban area compared to southern rural area.
- Low *N* area is *bounded* by hills and rivers and parallel to the N-S oriented mountain.

22°50'N 22°45'N 22°40'N 22°35'N 22°30'N 22°25'N 22°20'N 120°5'E 120°15'E 120°25'E 120°35'E 370 375 380 385 390 395

(one month average)

Mean Refractivity

b. The temporal variation of refractivity

■ Three intensive observation periods (*IOP*):

June 1 st – 5 th	June 14 th – 16 th	June 24 th – 28 th			
Mei-yu front	Mesoscale convective system	Typhoon FengSeng rainband			

Two patterns based on rainfall duration:

Rainfall Duration	Forcing	N value	N spread
> 6hr (IOP)	Synoptic system	Uniform and high	Spatial homogeneous
< 6hr (non-IOP)	Local circulation	Periodic diurnal cycle	Spatial heterogeneous

c. Diurnal characteristics of refractivity of IOP and non-IOP events

IOP:

- 1. No diurnal signal of **N**, since large-scale forcing dominates the low-level moisture.
- 2. Small standard deviation all the time indicates spatial homogeneity of moisture.

nIOP:

- 1. Maximum at 20~23 LST, minimum at 09~12 LST (diurnal change ~10 N-unit)
- 2. Moisture is more homogeneous in evening.
- The diurnal pattern is in contrast to continental environment .

(peaks at dawn and lowers in evening)

c. Diurnal characteristics of refractivity of IOP and non-IOP events

IOP:

- 1. Synoptic scale system dominates
 - → Persistent N pattern
- 2. Land-sea geographical environment
 - \rightarrow N gradient toward the coast

nIOP:

- 1. Daytime sea breeze
 - → NW SE oriented pattern
- 2. Nighttime land breeze
 - → N-S oriented pattern

■ The local circulation can be influenced by:

land-sea breeze, mountain-valley flow, and prevailing large-scale flow

- Three types of diurnal refractivity patterns under different weak synoptic conditions and local circulation are analyzed.
- The synoptic wind at southwestern Taiwan are:

south-southeasterly (6/8), easterly (6/20), and northerly (6/22)

- a. 8th June case study
 - 08~17 LST:
 - N gradient is persistently observed
 - 17~23 LST:

N continuously *increase* and become spatially *homogeneous*

■ 23~05 LST:

N *decreases* from the foothills and move *westward*

Land uses can influence N values

- a. 8th June case study
 - Persistent daytime refractivity gradient
 - 1. Higher moisture along the coast
 - {S wind at *Kaohsiung* SE wind at *Shiwei* → *Convergence*
 - 2. Lower moisture inland

 $\begin{cases} SW \text{ wind at } Fenhua \\ SE \text{ wind at } Shiwei \end{cases} \rightarrow Divergence$

 The wind at *Shiwei* plays a critical role in moisture distribution and N gradient.

- a. 8th June case study
 - The evening homogeneous and maximum refractivity field

- Greater increase in *q* is observed inland compared to along the coast.
- The increasing moisture is related to the larger *evapotranspiration* and weaker *vertical mixing* processes.

a. 8th June case study

- The nighttime refractivity gradient
 - The reduction of water vapor mixing ratio is affected by the easterly dry *downslope wind* from the mountains.
 - 2. q decreases at
 - ~2300 LST at Fenhua (foothill)
 - ~0200 LST at Shiwei (plain area)
 - **3.** *Meridionally oriented* low refractivity pattern moves from foothill to coast.

- b. 20th June case study
 - 08~14 LST:

Moist *sea-breeze* front moves inland and low-level *convergence* at foothill

- 14~20 LST: (storm: 1345~1900 LST)
 High moisture area moves westward with storm outflow
- 20~08 LST:

N *decreases* from the foothills and move *westward (similar to 8th June)*

22°50'N 22°45'N

22°40'N 22°35'N 22°30'N

22°25'N 22°20'N

b. 20th June case study

- The evolving sea-breeze front
 - 1. The see-breeze front observed by diffuse

reflectivity fine line is correspond to N gradient

- 2. The sea-breeze front move from coast to inland
- 3. There is a sea-breeze *time lag* between northern-

urban and southern-rural area

4. The larger *moisture contrast* between sea-breeze and the environment inland can be observed by ΔN_{30min}

b. 20th June case study

- **The refractivity in storm environment**
 - The increasing *moisture accumulate* at the foothills about 1h ahead of convection initiation (CI).
 - 2. The time lag of ΔN_{30min} and relative high N field can be *precursors* of CI nowcasting.
 - 3. The storm and its outflow cause N to decrease mainly by cooling $(T \downarrow)$ rather than adding mixing ratio (q).
 - **4.** The *N* increase westward more than southward due to land use differences.

b. 20th June case study

The obscure evening propagating moisture gradient

- **1.** A positive ΔN_{30min} area propagate from foothill to coastline after 1830 LST.
- **2.** ΔN_{30min} is caused by the increase of mixing ratio (q) suggested by observation data.
- 3. What causes the mixing ratio (q) to increase at foothill is still *not clear*.

b. 20th June case study

- c. 22nd June case study
 - 08~14 LST:
 - The northerly-northwesterly wind transport *drier air* from the northern hill.
 - 2. Unusual daytime low N value
 - 14~20 LST:
 - 1. Surface wind change from N to SW
 - 2. Moisture is transported inland
 - 20~08 LST:
 - The pattern is similar to $8^{\mbox{\tiny th}}$ and $20^{\mbox{\tiny th}}$ June

5. Discussion of the diurnal variation of refractivity

a. Hovmöller diagram

-16 -14 -12 -10 -8

- **Three time phase:**
 - 1. daytime
 - 2. evening transition
 - 3. nighttime

0 2

6

10 12 14 16

- The characteristics are *different*
 - in daytime but similar in
 - evening and nighttime among
 - the three cases.
- The sea-breeze penetrate
 - inland to the foot hill *before*
 - *noon* only in the 20th June case.
 - The *low-level moisture* is a key
 - factor to whether a storm can

be initiated.

5. Discussion of the diurnal variation of refractivity

b. Three types based on surface wind

Mean Diurnal Cycle of N

- Similarity: Moisture minimized at daytime and maximized at nighttime.
- Difference: SW cases had the highest mean

N value and favorable to afternoon

thunderstorm initiation.

5. Discussion of the diurnal variation of refractivity

c. Nocturnal mean refractivity of nIOP cases

The downslope wind initiate at river

valleys embedded in the mountains.

The N of *dry land* is lower than *irrigated*

croplands after 0200 LST.

6. Conclusions

- The radar retrieved refractivity is analyzed to reveal the near-surface moisture distribution in the summer time tropical coastal areas.
 - In the *IOP* cases:

The refractivity are persistently high while the spatial gradient are still exist from coast toward inland.

In the *non-IOP* cases:

The moisture distribution is affected by the *complicated interaction* between synoptic forcing, coastal processes, complex terrain, and land use.

The meso-y-scale moisture variability can be revealed from high-spatiotemporal resolution refractivity data, which can complement the limited number of surface observations.