WRF Precipitation Performance and Predictability for Systematically Varied Parameterizations over Complex Terrain

JULIA JEWORREK,^a GREGORY WEST,^b AND ROLAND STULL^a

^a The University of British Columbia, Vancouver, British Columbia, Canada ^b BC Hydro, Vancouver, British Columbia, Canada

(Manuscript received 21 October 2020, in final form 9 February 2021)

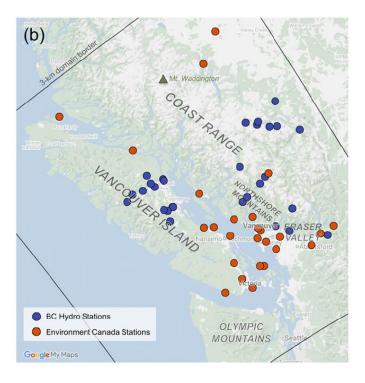
Outline

- 1. Background and introduction
- 2. Methodology
- 3. Results and discussion
- 4. Summary and conclusions

a. Research site

Southwestern British Columbia (BC), Canada

Two hydrometeorological seasons:


1. wet, cool season (fall, winter, spring)

2. dry, warm season (summer)

Enhanced precipitation on windward slopes

• Accurate precipitation forecasts are crucial for

reservoir and flood management

b. NWP issues in BC area


NWP limitations:

- 1. imperfect initial conditions
- 2. simplified approximations

Observation limitations:

1. radar observations are blocked by terrain

- 2. weather station are spatially uneven
- Mixed-phased orographic clouds are challenging in NWP models.
- Unresolved <u>complex terrain</u> in NWP models can cause false advection and blocking.

c. WRF parameterizations

Microphysics	Represent cloud hydrometeor processes of formation, growth, and fallout.
Cumulus	Represent the effect of unresolved vertical motion
Planetary Boundary Layer (PBL)	Estimate vertical mixing and turbulence fluxes
Land surface model	Estimate heat, moisture , and radiation from the ground to atmosphere

d. Model resolution issues

- Finer resolutions are often expected to improve forecasts by generating more <u>realistic</u> precipitation distribution.
- Finer resolutions are prone to temporal and spatial verification "<u>double-penalty</u>".
- NWP "<u>gray zone</u>" is also important to be aware of.

Finer resolution : Explicitly resolve the process	Gray Zone (4 km)	Coarser resolution: Implicitly describe the process through parameterization
---	---------------------	--

Scale-aware schemes are developed to bridge the gap between implicitly (parameterization) and explicitly (resolved) represented processes.

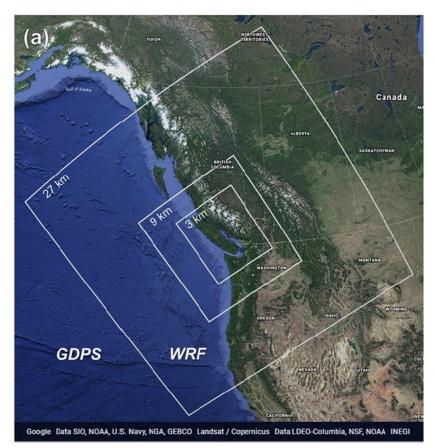
e. The goal of this study

Evaluate WRF precipitation forecasts over the <u>complex terrain</u> of southwest BC.

Systematically select different *parameterization* scheme

(microphysics, cumulus, PBL, and land surface).

• Evaluate the performance of each *WRF configuration*.


The 2016 full calendar year is selected for <u>verification</u>, which is more statistically robust than case studies.

a. Modeling

- <u>Model</u>: WRF 3.8.1
- **Domain**: 27/9/3km two-way nesting
- Initial/Boundary condition:

Global Deterministic Prediction System (GDPS) $(0.24^{\circ} \times 0.24^{\circ}, \text{ every 3 hours})$

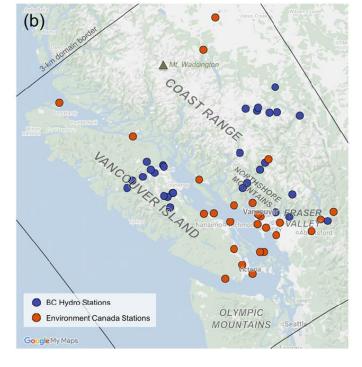
- **Daily initialized** at 0000 UTC for year 2016
- Forecast horizon: 3 day
- Model top: 50 hPa
- 65 sigma levels

a. Modeling

■ **36 different** model configurations

Physics parameterization scheme	Abbreviation
	Cumulus convection
Kain–Fritsch	KF
Grell–Freitas	GF
	Microphysics
WRF Single-moment 5-class scheme	WSM5
1.5-moment 6-class Thompson	Thom
2-moment 6-class Morrison	Morr
	Planetary boundary layer
Yonsei University scheme	YSU
Asymmetric Convective Model	ACM2
Grenier-Bretherton-McCaa scheme	GBM
	Land surface
Unified Noah land surface model	Noah
Multiphysics Noah land surface model	Noah-MP

Longwave radiation: RRTM


Shortwave radiation: Dudhia

For cumulus scheme:

- 1. turn on at each domain
- 2. KF: conventional scheme
- 3. GF: scale-aware scheme

b. Verification

- 55 hourly precipitation observations are used
- Nearest-neighbor method is used
- Hourly precipitation verification
 - \rightarrow double-penalty issues
 - \rightarrow extended accumulation windows
 - \rightarrow this study focuses on 6-hour accumulation

precipitation

b. Verification – Continuous metrics

Mean absolute error (MAE)

$$MAE = \frac{1}{n} \sum_{k=1}^{n} |y_k - o_k|$$

Bias

Bias =
$$\frac{1}{n} \sum_{k=1}^{n} (y_k - o_k)$$

Standard deviation (SD) of error

Mean square difference (MSD)

$$MSD = \frac{1}{n} \sum_{k=1}^{n} (y_k - o_k)^2$$

■ SD (forecast) / SD (observation)

- **b.** Verification Categorical metrics
 - Choose a precipitation <u>threshold</u>, and then:

Continge	ency	Observation				
Table	2	0	Х			
	0	(a) Hit	(b) False Alarm			
Forecast	х	(c) Miss	(d) Correct Rejection			

$$Accuracy = \frac{a+d}{a+b+c+d}$$

$$F = a + b$$
$$O = a + c$$

H = a

Domain point number = N

Random Guesses (R) = $F \times \frac{O}{N}$

Equitable Threat Score (**ETS**) = $\frac{H-R}{F+O-H-R}$

Frequency **Bias** = $\frac{F}{O}$

False Alarm Ratio (**FAR**) = $\frac{F - H}{F}$

Probability of detection (**POD**) = $\frac{H}{O}$

a. Individual model performance – Continuous metrics

For 9-km grid, 6-hour accumulated precipitation:

- Noah-MP is better than Noah
- KF is better than GF
- In postprocessing, bias is easier to be removed

than random error

 \rightarrow Lower $\frac{MSD_{random}}{MSD_{total}}$ and SD_{error} are better

Thom-KF performs the best

	~~~			MAE	BIAS	SD(Error)	SD(Fcst) / SD(Obs)	Correlation	MSD	MSD random/total
MP	CU	PBL	LS							
		YSU	Noah	1.29	0.106	3.12	1.05	0.474	11.4	0.705
			N MP	1.27	0.0952	3.09	1.04	0.481	11.2	0.705
	KF	ACM2	Noah	1.29	0.109	3.16	1.07	0.476	11.8	0.719
			N MP	1.29	0.0905	3.15	1.06	0.477	11.7	0.712
		GBM	Noah	1.29	0.113	3.16	1.06	0.472	11.7	0.719
WSM5	_	abiii	N MP	1.25	0.0909	3.07	1.02	0.47	11.2	0.712
Tomo		YSU	Noah	1.31	0.113	3.2	1.09	0.469	12	0.727
		130	N MP	1.29	0.0922	3.14	1.06	0.477	11.6	0.714
	GF	ACM2	Noah	1.32	0.123	3.25	1.11	0.469	12.4	0.741
	ur	ACINE	N MP	1.31	0.12	3.23	1.1	0.472	12.3	0.739
		GBM	Noah	1.32	0.115	3.25	1.1	0.462	12.4	0.73
		GDIW	N MP	1.31	0.109	3.24	1.1	0.467	12.4	0.736
		YSU	Noah	1.28	0.117	3.07	1.02	0.475	11	0.671
		130	N MP	1.27	0.0988	3.05	1.01	0.475	10.8	0.669
	KF	ACM2	Noah	1.28	0.124	3.1	1.04	0.474	11.1	0.688
	ĸr	ACM2	N MP	1.26	0.1	3.04	1.02	0.483	10.8	0.68
		GBM	Noah	1.3	0.123	3.12	1.05	0.47	11.3	0.691
Thom		GDW	N MP	1.28	0.106	3.09	1.04	0.478	11.1	0.689
mom		YSU	Noah	1.29	0.097	3.14	1.06	0.47	11.4	0.694
			N MP	1.27	0.0758	3.09	1.03	0.476	11.2	0.682
	GF	ACM2	Noah	1.31	0.126	3.21	1.1	0.463	11.9	0.716
	Gr	ACM2	N MP	1.3	0.118	3.17	1.08	0.471	11.7	0.715
		GBM	Noah	1.31	0.114	3.19	1.08	0.46	11.7	0.713
		GDIW	N MP	1.3	0.109	3.19	1.08	0.465	11.7	0.715
		YSU	Noah	1.28	0.107	3.08	1.03	0.474	11	0.688
		130	N MP	1.28	0.0964	3.08	1.03	0.475	10.9	0.688
	KF		Noah	1.29	0.107	3.12	1.05	0.47	11.3	0.701
	R.F	ACM2	N MP	1.28	0.0963	3.11	1.04	0.474	11.3	0.699
		CRM	Noah	1.29	0.102	3.13	1.05	0.469	11.5	0.703
Marr		GBM	N MP	1.29	0.0974	3.13	1.05	0.472	11.5	0.707
Morr		YSU	Noah	1.31	0.138	3.17	1.08	0.469	11.5	0.71
		130	N MP	1.28	0.127	3.1	1.05	0.472	11.2	0.71
	05		Noah	1.32	0.151	3.21	1.1	0.466	11.9	0.731
	GF	ACM2	N MP	1.32	0.153	3.2	1.1	0.47	11.9	0.732
		GBM	Noah	1.33	0.141	3.24	1.11	0.458	12.1	0.73
		GBM	N MP	1.35	0.15	3.27	1.12	0.463	12.4	0.736

- 3. Results and discussion
- a. Individual model performance
  - Categorical metrics

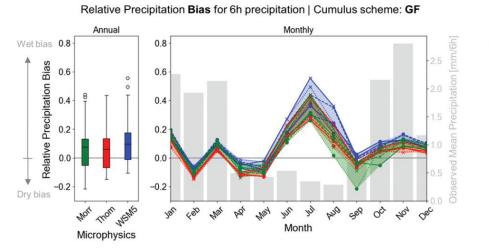
For 0.25mm threshold (precipitation or not):

- WSM5-KF, WSM5-GF, and Thom-GF perform best
- For Thom-KF configuration:
  frequency bias ↑
  false alarm ratio ↑ / accuracy ↓
  POD ↑

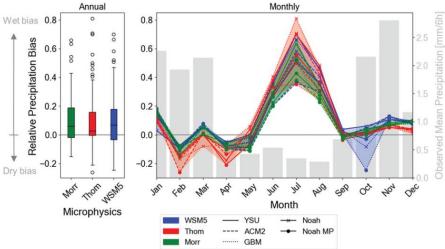
				R		<u>0.25 mm</u>		1	6	Z	5th Percentil	e	
MP	CU	PBL	LS	Accuracy	ETS	False Alarm Ratio	Frequency Bias	POD	Accuracy	ETS	False Alarm Ratio	Frequency Blas	POD
			Noah	0.813	0.338	0.412	1.17	0.67	0.922	0.218	0.614	1.14	0.415
		YSU	N MP	0.82	0.346	0.403	1.14	0.667	0.924	0.227	0.607	1.14	0.426
			Noah	0.816	0.34	0.404	1.14	0.659	0.923	0.219	0.615	1.13	0.414
	KF	ACM2	N MP	0.818	0.343	0.397	1.12	0.656	0.922	0.218	0.613	1.11	0.41
			Noah	0.816	0.34	0.411	1.16	0.666	0.923	0.22	0.614	1.13	0.416
		GBM	N MP	0.817	0.338	0.408	1.14	0.655	0.925	0.216	0.619	1.12	0,406
WSM5			Noah	0.817	0.341	0.396	1.1	0.651	0.92	0.217	0.616	1.14	0.414
		YSU	N MP	0.821	0.346	0.39	1.09	0.65	0.922	0.222	0.609	1.14	0.419
	~	ACM2	Noah	0.82	0.339	0.395	1.09	0.643	0.921	0.217	0.62	1.16	0.417
	Gr	AGMZ	N MP	0.821	0.342	0.391	1.08	0.643	0.921	0.221	0.618	1.17	0.426
		GBM	Noah	0.818	0.338	0.396	1.09	0.641	0.921	0.216	0.62	1.15	0.413
			N MP	0.82	0.339	0.393	1.08	0.639	0.922	0.218	0.618	1.14	0.415
		YSU	Noah	0.803	0.329	0.437	1.28	0.702	0.922	0.217	0.609	1.12	0.407
		130	N MP	0.808	0.336	0.426	1.25	0.697	0.924	0.22	0.601	1.1	0.407
	KF	ACM2	Noah	0.805	0.329	0.433	1.26	0.694	0.923	0.22	0.607	1.12	0.409
	R.F	AGM2	N MP	0.809	0.336	0.424	1.23	0.69	0.924	0.224	0.601	1.11	0.414
		GBM	Noah	0.801	0.324	0.438	1.27	0.695	0.922	0.218	0.61	1.12	0.406
Thom		GBM	N MP	0.807	0.334	0.425	1.24	0.691	0.923	0.223	0.602	1.11	0.411
mon		YSU	Noah	0.816	0.335	0.4	1.11	0.645	0.921	0.218	0.611	1.14	0.413
		100	N MP	0.818	0.34	0.396	1.1	0.647	0.922	0.221	0.606	1.13	0.414
	GF	ACM2	Noah	0.816	0.332	0.398	1.09	0.637	0.92	0.213	0.623	1.16	0.411
		AOME	N MP	0.818	0.336	0.395	1.09	0.638	0.921	0.218	0.618	1.17	0.419
		GBM	Noah	0.814	0.326	0.402	1.08	0.627	0.921	0.213	0.623	1.16	0.41
		ubiii	N MP	0.815	0.33	0.396	1.07	0.629	0.921	0.218	0.618	1.16	0.417
		YSU	Noah	0.809	0.331	0.423	1.2	0.676	0.922	0.217	0.613	1.13	0.41
			N MP	0.813	0.338	0.415	1.18	0.675	0.922	0.218	0.61	1.12	0.41
	KF	ACM2	Noah	0.812	0.332	0.418	1.18	0.666	0.923	0.216	0.613	1.12	0.408
			N MP	0.813	0.332	0.415	1.16	0.661	0.923	0.216	0.611	1.11	0.407
		GBM	Noah	0.81	0.33	0.421	1.19	0.668	0.922	0.217	0.613	1.12	0.408
Morr			N MP	0.812	0.334	0.416	1.18	0.669	0.922	0.218	0.61	1.11	0.408
		YSU	Noah	0.812	0.332	0.414	1.16	0.661	0.921	0.216	0.615	1.16	0.415
			N MP	0.815	0.332	0.413	1.15	0.656	0.922	0.215	0.618	1.15	0.413
	GF	ACM2	Noah	0.812	0.325	0.414	1.15	0.649	0.921	0.214	0.622	1.18	0.417
	-		N MP	0.812	0.328	0.412	1.15	0.65	0.921	0.218	0.618	1.18	0.423
		GBM	Noah	0.811	0.322	0.415	1.13	0.641	0.921	0.212	0.623	1.16	0.409
	GBM	u u u	N MP	0.811	0.325	0.41	1.13	0.644	0.92	0.216	0.618	1.16	0.416

### a. Individual model performance

- Categorical metrics


For 75th percentile threshold (significant event):

- **KF** is better than **GF**
- Thom-KF performs best
- WSM5 has better POD performance
- For Thom-KF configuration:
  frequency bias ↓
  false alarm ratio ↓ / accuracy ↑


POD	1	
-----	---	--

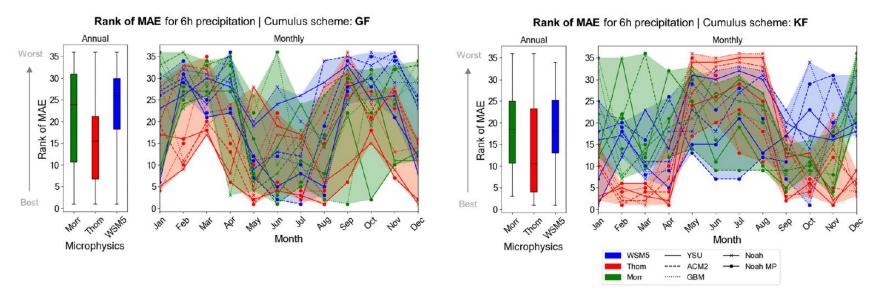
			1			<u>0.25 mm</u>			75th Percentile				
				Accuracy	ETS	False Alarm Ratio	Frequency Bias	POD	Accuracy	ETS	False Alarm Ratio	Frequency Bias	POD
MP	CU	PBL	LS										
		YSU	Noah	0.813	0.338	0.412	1.17	0.67	0.922	0.218	0.614	1.14	0.415
			N MP	0.82	0.346	0.403	1.14	0.667	0.924	0.227	0.607	1.14	0.426
	KF	ACM2	Noah	0.816	0.34	0.404	1.14	0.659	0.923	0.219	0.615	1.13	0.414
		HUME	N MP	0.818	0.343	0.397	1.12	0.656	0.922	0.218	0.613	1.11	0.41
		GBM	Noah	0.816	0.34	0.411	1.16	0.666	0.923	0.22	0.614	1.13	0.416
WSM5		GDIM	N MP	0.817	0.338	0.408	1.14	0.655	0.925	0.216	0.619	1.12	0.406
Wolno		YSU	Noah	0.817	0.341	0.396	1.1	0.651	0.92	0.217	0.616	1.14	0.414
		100	N MP	0.821	0.346	0.39	1.09	0.65	0.922	0.222	0.609	1.14	0.419
	CE	ACM2	Noah	0.82	0.339	0.395	1.09	0.643	0.921	0.217	0.62	1.16	0.417
	Gr	ACMZ	N MP	0.821	0.342	0.391	1.08	0.643	0.921	0.221	0.618	1.17	0.426
		GBM	Noah	0.818	0.338	0.396	1.09	0.641	0.921	0.216	0.62	1.15	0.413
		GBM	N MP	0.82	0.339	0.393	1.08	0.639	0.922	0.218	0.618	1,14	0.415
		YSU	Noah	0.803	0.329	0.437	1.28	0.702	0.922	0.217	0.609	1.12	0.407
		130	N MP	0.808	0.336	0.426	1.25	0.697	0.924	0.22	0.601	1.1	0.407
	KF	ACM2	Noah	0.805	0.329	0.433	1.26	0.694	0.923	0.22	0.607	1.12	0.409
	RF.	ACM2	N MP	0.809	0.336	0.424	1.23	0.69	0.924	0.224	0.601	1.11	0.414
		GBM	Noah	0.801	0.324	0.438	1.27	0.695	0.922	0.218	0.61	1.12	0.406
		GBM	N MP	0.807	0.334	0.425	1.24	0.691	0.923	0.223	0.602	1.11	0.411
Thom	_	VSII	Noah	0.816	0.335	0.4	1.11	0.645	0.921	0.218	0.611	1.14	0.413
		YSU	N MP	0.818	0.34	0.396	1.1	0.647	0.922	0.221	0.606	1.13	0.414
			Noah	0.816	0.332	0.398	1.09	0.637	0.92	0.213	0.623	1.16	0.411
	GF	ACM2	N MP	0.818	0.336	0.395	1.09	0.638	0.921	0.218	0.618	1.17	0.419
		GBM	Noah	0.814	0.326	0.402	1.08	0.627	0.921	0.213	0.623	1.16	0.41
		GDM	N MP	0.815	0.33	0.396	1.07	0.629	0.921	0.218	0.618	1.16	0.417
		YSU	Noah	0.809	0.331	0.423	1.2	0.676	0.922	0.217	0.613	1.13	0.41
		Tau	N MP	0.813	0.338	0.415	1.18	0.675	0.922	0.218	0.61	1.12	0.41
			Noah	0.812	0.332	0.418	1.18	0.666	0.923	0.216	0.613	1.12	0.408
	KF	ACM2	N MP	0.813	0.332	0.415	1.16	0.661	0.923	0.216	0.611	1.11	0.407
		GBM	Noah	0.81	0.33	0.421	1.19	0.668	0.922	0.217	0.613	1.12	0.408
		GBM	N MP	0.812	0.334	0.416	1.18	0.669	0.922	0.218	0.61	1.11	0.408
Morr	-		Noah	0.812	0.332	0.414	1.16	0.661	0.921	0.216	0.615	1.16	0.415
		YSU	N MP	0.815	0.332	0.413	1.15	0.656	0.922	0.215	0.618	1.15	0.413
			Noah	0.812	0.325	0.414	1.15	0.649	0.921	0.214	0.622	1.18	0.417
	GF	ACM2	N MP	0.812	0.328	0.412	1.15	0.65	0.921	0.218	0.618	1.18	0.423
			Noah	0.811	0.322	0.415	1.13	0.641	0.921	0.212	0.623	1.16	0.409
		GBM	N MP	0.811	0.325	0.41	1.13	0.644	0.92	0.216	0.618	1.16	0.416

#### b. Seasonal performance variation – 27km grid



Relative Precipitation Bias for 6h precipitation | Cumulus scheme: KF




Climatology (gray bars):

cool and wet (stratiform)

warm and dry (convective)

- Warm season: wet bias (GF better than KF)
- <u>Cool season</u>: neutral to dry bias

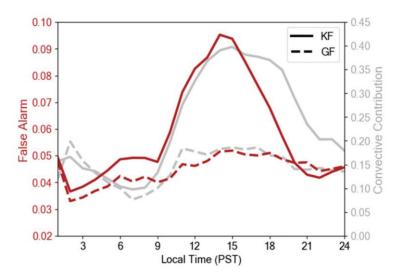
#### b. Seasonal performance variation – 27km grid



- Thom-KF performs well in cool season (stratiform precipitation)
- **Thom-KF** performance has large seasonal variation
- Scale-aware GF performs better in warm season (convective precipitation)

#### **b.** Seasonal performance variation

#### For 9km grid forecast in summer (June - August):


- Cumulus scheme has large impact on summer convective precipitation performance
- For **KF** at 1400 LST:

apparent diurnal pattern (observation not show)

9.5% false alarm ratio (FAR)

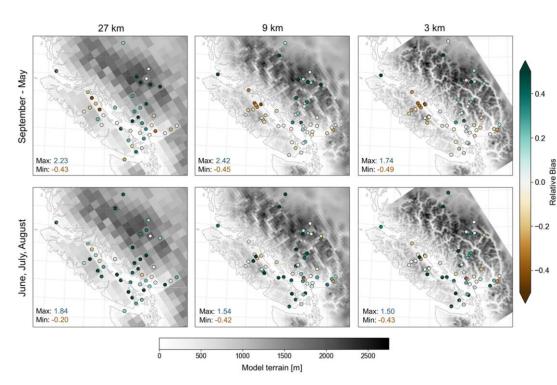
40% total precipitation contribution

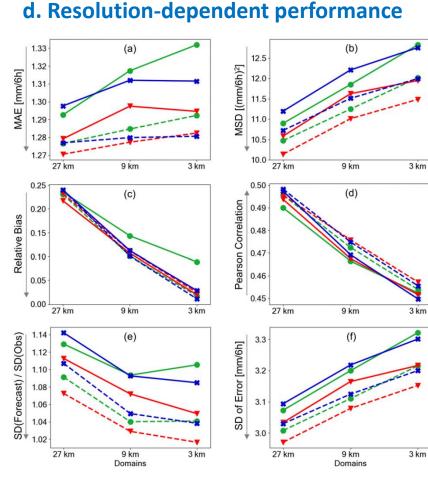
**GF** performs better than **KF** in warm season



c. Geographical performance patterns

 $\frac{Relative Bias}{Obs} = \frac{WRF - Obs}{Obs}$ 


### For cool and wet season:


- 1. dry bias on the lee side
- 2. wet bias on wind ward slope
- For warm and dry season:

general wet bias

(without geographical variation)

Extreme wet bias on windward slope in the model





	Coarser (27-km)	Finer (3-km)
(a) MAE	0	
(b) MSD	0	
(c) Bias		0
(d) Correlation	0	
(e) SD ratio		0
(f) Error SD	0	

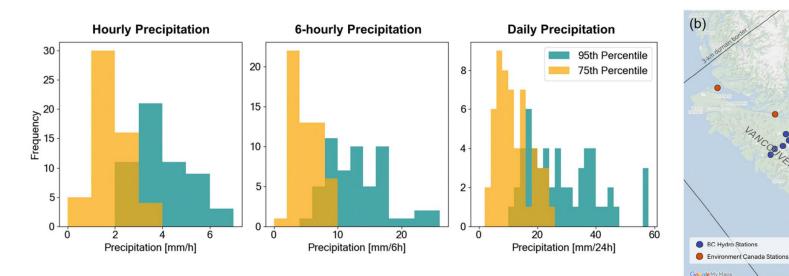
- KF performs better than GF (surprisingly)
- Finer resolution produces more extreme and localized precipitation

MP.CU

(Morr, GF

Morr, KF

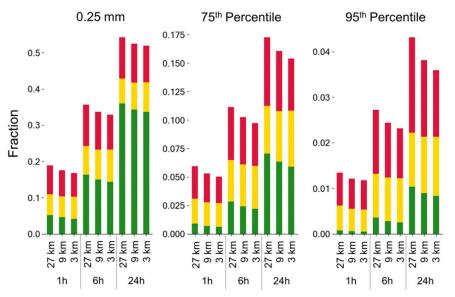
hom, GF


SM5 GF

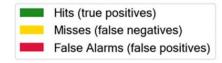
(WSM5, KF)

 $\rightarrow$  worse MAE, MSD, and SD of error

e. Common versus extreme event performance


- The climatology of 55 stations across the region are disparate
- 75th (common) and 95th (extreme) percentile distributions are different




OLYMPIC

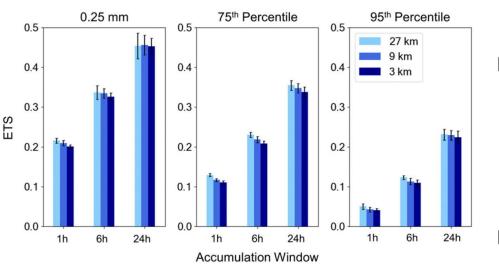
#### e. Common versus extreme event performance

### For the mean of all configurations:



Domain Grid Size & Accumulation Window



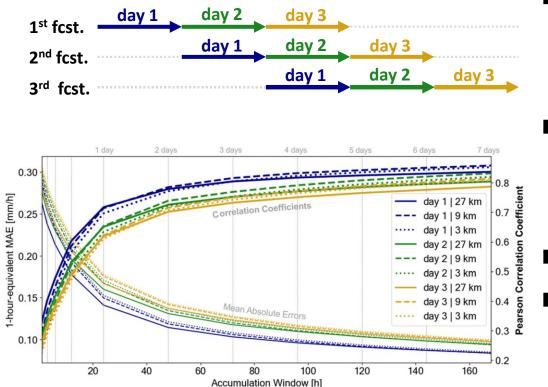

- Temporal resolution impacts more than spatial resolution
- Hit rate decreases for:
  - 1. more extreme events
  - 2. smaller accumulation time windows
  - **3.** finer grid resolutions
- The "<u>deterministic limit</u>" is exceeded for

smaller accumulation windows and

more extreme events

#### e. Common versus extreme event performance

### For the mean of all configurations:




(Error bars represent the spread among individual models)

- Temporal resolution impacts more than spatial resolution
  - Hit rate decreases for:
    - 1. more extreme events
    - 2. smaller accumulation time windows
    - **3.** finer grid resolutions
- The "<u>deterministic limit</u>" is exceeded for

smaller accumulation windows and more extreme events

#### f. Predictability with forecast horizon and accumulation window



#### Forecast quality will diminish with:

- 1. longer forecast horizons
- 2. shorter accumulation windows
- The difference between day 1

and day 2 is larger than day 2

and day 3

■ <u>MAE</u>: 3-km performs the worst

Correlation:

27-km performs well in the 1st day

9-km performs well after the 2nd day

### g. Model interdependence – hierarchical clustering

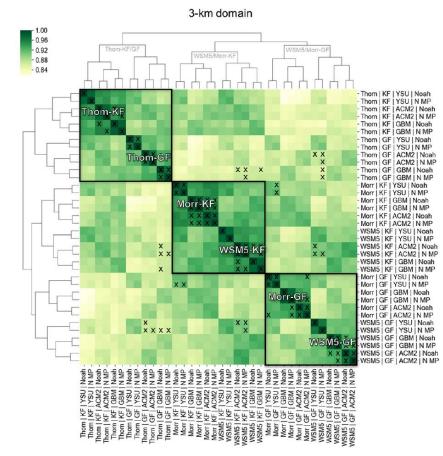
27-km domain



- Based on Pearson correlation coefficients
- Correlation are generally large (>0.9)

#### 1st hierarchy: cumulus scheme

**KF** configurations are more correlated in


precipitation than **GF** 

### 2nd hierarchy: microphysics scheme

**Thom** and **Morr** are better correlated

• WSM5 has its own group

### g. Model interdependence – hierarchical clustering



- Based on Pearson correlation coefficients
- Correlation are less correlated (>0.8)

#### 1st hierarchy: cumulus-microphysics mixing

- **Thom-KF** and **Thom-GF**
- WSM5-KF and Morr-KF
- Morr-GF and WSM5-GF

#### 2nd hierarchy: PBL scheme

- ACM2 and GBM often group together
- **YSU** has its own group

### 4. Summary and conclusions

- Cumulus and microphysics are confirmed the primary parameterization to determine the precipitation forecast performance.
- For microphysical scheme:

WSM5 and Thom both perform well, but WSM5 is less expensive .

#### For cumulus scheme:

- 1. GF performs well in summer convective precipitation.
- **2. KF** performs well in wintertime precipitation, which is the majority of annual rainfall.
- **3.** Scale-aware **GF** scheme does not outperform conventional **KF** scheme at finer resolutions.

### 4. Summary and conclusions

- The best-performing configuration is <u>unique to each area</u> and application.
  - In southwest BC, the following 5 configuration perform better:
  - 1. WSM5-KF-YSU-NoahMP
  - 2. WSM5-KF-GBM-NoahMP
  - 3. Thom-KF-YSU-NoahMP
  - 4. Thom-KF-ACM2-NoahMP
  - 5. Thom-GF-YSU-NoahMP

### 4. Summary and conclusions

#### For spatial resolusion issues:

- Higher spatial resolutions can produce more realistic spread of precipitation, while they have higher random errors and are prone to <u>"double-penalty</u>" issues.
- Coarser spatial resolutions have less random errors while the bias are larger.
- Configurations with finer grids diverge more, so the choice of cumulus and microphysics parameterization combinations become increasingly important.

#### For temporal resolusion issues:

The length of accumulation windows have large impact on verification.

### Thanks for listening.

	IC/BC	cumulus scheme	microphysics scheme	MAE	MSE	BIAS	STD_error	STD_ratio	CC
E01			WDM 6-class	39.99	3203.73	-14.03	54.84	0.77	0.30
E02		Kain-Fritsch	Goddard	36.48	2848.72	-21.70	48.76	0.68	0.41
E03		Kain-Fritsch	Thompson	40.46	3165.17	-22.37	51.62	0.60	0.29
E04			Morrison	32.17	2370.68	-22.15	43.36	0.65	0.54
E05			WDM 6-class	37.60	2894.23	-17.57	50.85	0.78	0.40
E06		Dette Milley Joyije	Goddard	38.66	2997.20	-15.95	52.37	0.84	0.40
E07		Betts-Miller-Janjic	Thompson	34.89	2340.04	-8.33	47.65	0.77	0.47
E08	NCEP FNL		Morrison	38.91	2723.02	-10.95	51.02	0.77	0.39
E09	NCEP FINL		WDM 6-class	35.06	2637.50	-17.54	48.27	0.83	0.49
E10			Goddard	38.19	2891.51	-13.77	51.98	0.90	0.43
E11		Grell 3D ensemble	Thompson	43.38	3557.61	-14.69	57.81	0.89	0.29
E12			Morrison	33.06	2410.29	-20.39	44.66	0.75	0.54
E13			WDM 6-class	39.98	3299.41	-18.85	54.26	0.93	0.40
E14		Grell-Devenyi ensemble	Goddard	37.70	2872.21	-16.28	51.06	0.82	0.42
E15			Thompson	44.90	3785.54	-15.86	59.45	0.85	0.22
E16			Morrison	33.97	2466.23	-20.29	45.33	0.74	0.52
E17			WDM 6-class	37.74	2743.46	-9.05	51.59	0.89	0.44
E18		Kain-Fritsch	Goddard	43.56	3681.04	-1.25	60.66	0.98	0.29
E19			Thompson	41.34	3308.54	-2.60	57.46	0.94	0.33
E20			Morrison	35.55	2607.72	-4.19	50.89	1.02	0.52
E21			WDM 6-class	38.78	2991.42	-23.05	49.60	0.58	0.35
E22		Dette Milley Joyije	Goddard	38.98	2943.88	-21.82	49.68	0.51	0.32
E23		Betts-Miller-Janjic	Thompson	55.42	5402.37	-10.78	72.71	0.92	-0.09
E24			Morrison	38.82	2906.98	-6.92	53.47	0.90	0.40
E25	EC ERA5		WDM 6-class	42.61	3349.79	-13.40	56.30	0.80	0.27
E26			Goddard	42.69	3680.89	-8.75	60.04	0.96	0.29
E27		Grell 3D ensemble	Thompson	46.87	3913.19	-11.69	61.45	0.85	0.17
E28			Morrison	36.26	2623.80	-13.32	49.46	0.74	0.42
E29			WDM 6-class	44.17	3461.02	-17.96	56.02	0.72	0.22
E30			Goddard	39.12	3190.67	-7.37	56.00	0.98	0.39
E31		Grell-Devenyi ensemble	Thompson	47.65	3880.28	-9.02	61.63	0.84	0.15
E32			Morrison	34.94	2617.87	-13.82	49.26	0.91	0.50

	IC/BC	cumulus scheme	microphysics scheme	TS	ETS	BIAS	FAR	POD	Accuracy
E01			WDM 6-class	0.13	0.08	0.37	0.57	0.16	0.79
E02		Kain-Fritsch	Goddard	0.13	0.09	0.23	0.39	0.14	0.81
E03		Kalli-Fritsch	Thompson	0.03	0.01	0.10	0.70	0.03	0.79
E04			Morrison	0.18	0.14	0.22	0.15	0.19	0.83
E05			WDM 6-class	0.17	0.11	0.45	0.53	0.21	0.79
E06		Dotto Millor Jonija	Goddard	0.21	0.13	0.53	0.51	0.26	0.80
E07		Betts-Miller-Janjic	Thompson	0.26	0.19	0.56	0.42	0.32	0.82
E08	NCEP FNL		Morrison	0.08	0.02	0.41	0.74	0.11	0.76
E09	INCEP FINL		WDM 6-class	0.29	0.23	0.47	0.28	0.33	0.84
E10		Crall 2D ansamble	Goddard	0.27	0.19	0.65	0.46	0.35	0.81
E11		Grell 3D ensemble	Thompson	0.20	0.12	0.60	0.56	0.27	0.79
E12			Morrison	0.18	0.13	0.36	0.41	0.21	0.81
E13			WDM 6-class	0.24	0.18	0.44	0.37	0.28	0.82
E14		Grell-Devenyi ensemble	Goddard	0.21	0.14	0.49	0.48	0.26	0.80
E15			Thompson	0.15	0.08	0.56	0.63	0.21	0.77
E16			Morrison	0.22	0.16	0.40	0.36	0.25	0.82
E17			WDM 6-class	0.20	0.11	0.71	0.60	0.28	0.77
E18		Kain-Fritsch	Goddard	0.21	0.11	0.89	0.63	0.33	0.75
E19			Thompson	0.22	0.12	0.83	0.60	0.33	0.76
E20			Morrison	0.37	0.28	0.90	0.43	0.52	0.82
E21			WDM 6-class	0.04	0.02	0.16	0.68	0.05	0.79
E22		Dette Milley Joy is	Goddard	0.00	0.00	0.06	1.00	0.00	0.79
E23		Betts-Miller-Janjic	Thompson	0.01	0.00	0.55	0.97	0.02	0.70
E24			Morrison	0.14	0.05	0.64	0.69	0.20	0.75
E25	EC ERA5		WDM 6-class	0.09	0.02	0.51	0.76	0.12	0.75
E26		Croll 2D oncomble	Goddard	0.17	0.09	0.61	0.62	0.23	0.77
E27		Grell 3D ensemble	Thompson	0.10	0.03	0.48	0.72	0.13	0.76
E28			Morrison	0.07	0.02	0.29	0.72	0.08	0.77
E29			WDM 6-class	0.07	0.01	0.38	0.76	0.09	0.76
E30			Goddard	0.23	0.14	0.70	0.54	0.32	0.79
E31		Grell-Devenyi ensemble	Thompson	0.12	0.04	0.60	0.71	0.18	0.75
E32			Morrison	0.29	0.21	0.57	0.39	0.35	0.83