Idealized High-Resolution Simulations of a Back-Building Convective System that Causes Torrential Rain

JUNSHI ITO,a,b HIROSHIGE TSUGUCHI,c SYUGO HAYASHI,c AND HIROSHI NIINOb

a Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan

b Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan

c Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Ibaraki, Japan

(Manuscript received 30 May 2019, in final form 27 August 2020)

Speaker: Jo-Yu Wu

OUTLINE

1. Introduction

2. Numerical Setup

3. Simulation Results

4. Discussion

5. Conclusions

INTRODUCTION BACKGROUND

- (QLCS).
- clouds.
- A back-building QLCS may persist for several hours.
- occurrence and amount of precipitation. (Kato 2020)
- southwestern part of Japan. (Unuma and Takemi 2016)

Torrential rainfall is often caused by a long-lived slow-moving quasi-linear convective system

In a back-building QLCS, new cumulus clouds repeatedly develop up-stream of the preceding

• It is difficult for current operational models to precisely predict time and location of their

A large fraction of the quasi-stationary QLCSs occurred over Kyushu (九州) Island in the

REGION DESCRIPTION

INTRODUCTION CASE DESCRIPTION: 2017/07/05(KH2017)

INTRODUCTION CASE DESCRIPTION: 2017/07/05(KH2017)

Including detailed topography in a numerical model may be a key to accurate prediction of the location and precipitation of the QLCS in the KH2017 event. (Takemi 2018)

Including detailed topography in a numerical model may be a key to accurate prediction of the location and precipitation of the QLCS in the KH2017 event. (Takemi 2018)

The quasi-stationary QLCS formed even in the absence of the topography of northern Kyushu Island, so that the topography does not seem to be a critical factor for the present QLCS. (Tsuguti 2019; Kawano and Kawamura 2020)

Including detailed topography in a numerical model may be a key to accurate prediction of the location and precipitation of S the KH2017 event. (Takéhi 2 3 The quasi-sta formed even S in the abs/ ography of northern Kyushu Island, so that the topography does not seem to be a critical factor for the present QLCS. (Tsuguti 2019; Kawano and Kawamura 2020) >(mm)

				7									

ARGUMENTS

A cold pool was not essential to maintain the quasi-stationary QLCS.

(Tsuguti 2019; Kawano and Kawamura 2020)

A cold pool was not essential to maintain the quasi-stationary QLCS.

(Tsuguti 2019; Kawano and Kawamura 2020)

It is generally considered that quasi-stationary QLCSs may be caused by larger-scale forcing such as a mesoscale convective vortex.

(Unuma and <u>Takemi</u> 2016)

Model	JMA Non-Hydrostat (Saito et al. 2006, 2007)
	Horizontally Explicit
	Three-Ice Single-Mor (Lin et al. 1983; modified
Settings	Simple Local Closure (Deardorff 1971)
	Bulk Method for the
	Heat, and Moisture (Beljaars And Holtslag 19
	Coriolis Force (Not

- MODEL SETTING
 - ic Model (JMA-NHM)
 - and Vertically Implicit (HE-VI) Scheme
 - ment Bulk Scheme by Ikawa and Saito, 1991)
 - e for the Turbulence Parameterization
 - Surface Flux of Momentum, Sensible
 - **Considered**)

SOUNDING

The sounding is obtained by averaging the JMA 5-km-mesh mesoscale analysis at the time of peak torrential rain (2017/07/05 1500 JST) over

NUMERICAL SETUP DOMAIN

DOMAIN

SEA

LAND

Roughness length of the ocean

surface depends on wind speeds.

(Beljaars 1995)

DOMAIN

Experiment	dx, dy [m]	dz [m]	dt [s]		
Control	100		0.5		
Sensitivity	150, 300, 500, 1000, 1500, 2000	100			

SIMULATION RESULTS CONTROL EXPERIMENT

SIMULATION RESULTS CONTROL EXPERIMENT

20 km

100 350 600 850 1100

CONTROL EXPERIMENT

SIMULATION RESULTS CONTROL EXPERIMENT

Vector: Horizontal Wind [m/s; z=100m] / Shading : Div. [10^-4/s; z=100m]

Precip. [mm/hr]

t = 1hr t = 2hr t = 3hr t = 4hr t = 5hr t = 6hr

t = 7hr

CONTROL EXPERIMENT

CONTROL EXPERIMENT

SIMULATION RESULTS CONTROL EXPERIMENT

Vector: Horizontal Wind [m/s; z=100m] / Shading : Div. [10^-4/s; z=100m] Div 10-4/s (z= 100m) x=22.5km y=112.5km 111111 +++++++++ ----Precip. [mm/hr]

t = 1hr

t = 2hr

t = 3hr

Downdraft and cold pool formed, results divergences in lower height.

CONTROL EXPERIMENT

CONTROL EXPERIMENT

SIMULATION RESULTS

COMPARE WITH OBS.

KH2017 [2017/07/05 1500 JST]

SIMULATION RESULTS COMPARE WITH OBS. KH2017 [2017/07/05 1500 JST] 50km 50km 32 34 → 5m/s (°C) 24 28 20 22 26 30

COMPARE WITH OBS.

The fraction of cloud area decreases with decreasing dx.

The fraction of cores changes little with dx for $dx \le 300$ m.

Uc with coarser dx is slightly slower above z ~ 5 km than that for experiments with finer dx.

The location of the cold pool moves

downstream as dx is decreased.

SURFACE PRESSURE DEPRESSION

$$L = \int_0^T \left(u_0 - \frac{\Delta P}{\rho L} t \right) dt,$$

T: the time when the parcel reaches the convective system

 $\Delta P/\rho L$: the instantaneous acceleration

uO: the upstream wind speed

p: the air density

(1)

SURFACE PRESSURE DEPRESSION

The surface pressure can be lowered beneath the convective system where latent heating is active.

$$L = \int_0^T \left(u_0 - \frac{\Delta P}{\rho L} t \right) dt, \qquad (1)$$

T: the time when the parcel reaches the convective system $\Delta P/\rho L$: the instantaneous acceleration uO: the upstream wind speed p: the air density

SURFACE PRESSURE DEPRESSION

SURFACE PRESSURE DEPRESSION

The dry experiment does produce a line-shaped region of convergence over the land, similar to that in the spin-up stage of the control experiment.

However, the horizontal wind speed remains less than ~5 m/s at largest.

EFFECTS OF VERTICAL SHEAR AND COLD POOL

EFFECTS OF VERTICAL SHEAR AND COLD POOL

EFFECTS OF VERTICAL SHEAR AND COLD POOL

The total amount of precipitation is larger than that of experiment 1U

EFFECTS OF VERTICAL SHEAR AND COLD POOL

EFFECTS OF VERTICAL SHEAR AND COLD POOL

....

The maximum accumulated precipitation of 1.5U occurs about 20 km downstream of that for experiment 1U. The area with large precipitation is more elongated in the x direction.

DISCUSSION

MECHANISM FOR MAINTENANCE OF THE CONVECTIVE SYSTEM

EFFECTS OF VERTICAL SHEAR AND COLD POOL

DISCUSSION

MECHANISM FOR MAINTENANCE OF THE CONVECTIVE SYSTEM

EFFECTS OF VERTICAL SHEAR AND COLD POOL

A stationary QLCS is formed even in the absence of evaporative cooling and hence without a cold pool.

CONCLUSIONS

CONCLUSIONS

Warmer land

Sea

The present situation that the sea-breeze fronts and vertical shear nearly parallel to the fronts play important roles in the formation of the back-building QLCS.

A feedback from preceding cumulus clouds generate a mesoscale pressure depression near the surface, which strengthens the near-surface convergence to the system.

The present convective system can develop even in the absence of a cold pool.

Thanks for listening!

