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Introduction

* The rotating-convection paradigms need a modest elevation
of surface enthalpy fluxes to sustain the deep convection for
spinup in the low to middle moist tropical environment.
Convection amplifies the vorticity by stretching and tilting
process.

* Some abbreviations:
* BL: boundary layer
 AAM: absolute angular momentum
e RMW: Radius of maximum wind
* FD: Finite difference



Introduction

* The nonlinear BL dynamics in the spinup of a hurricane
vortex in important:

1. The cross-isobaric low-level inflow transports higher AAM from
environment to eyewall but is dissipated by friction.

2. Theinflow is decelerated as it approach the RMW because of the
centrifugal force.

3. The inflow ascends in the eyewall and transports AAM to spinup
the tangential wind.

4. The higher AAM produces larger centrifugal force and outflow in
eyewall above BL.

5. TCspinup if the spinup process overcome the spindown process.
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Introduction

e Assumptions in the Eliassen (balance) model:

* Axisymmetric TCs
* Hydrostatic balance —
e Gradient wind balance __|

Montgomery

Nonlinear BL dynamics is an
essential element of the spinup of
the tangential wind, especially in
the vortex attains hurricane
strength.

Thermal wind balance

Heng

Axisymmetric balanced model is
sufficient for explaining the spinup
of real or simulated hurricanes
(nonlinear, unbalanced, and
asymmetric eddy process are
secondary to spinup).



Introduction

« Montgomery: The domestic surface inflow was weaker than
the simulated surface inflow.

* Heng—>Montgomery: The surface inflow was

underestimated because the 15t order FD was used at the

. . d
lower boundary. The tangential wind tendency 6—: was also

underestimated.

* Montgomery: Update the FD to 2" order.



Introduction

« Montgomery—>Heng: They used the azimuthal averaged
tangential wind of the simulation, which did not solve the
thermal wind equation, in the Eliassen model. The solutions
can not be regard as strict balanced solutions (were
contaminate by imbalance singal).

v . .. .
* Montgomery—>Heng: 3¢ Was spinup in inner-core atBL in
their results, whereas it was spindown in our results.

* The paper consider the strict balanced solutions. Whether
the balance model can capture the results (BL inflow and

a_: )caused from the BL friction imbalance in TC intensification.
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The full-physics simulations
Cloud Model 1 (CM1)

» Three-dimensional simulation
* Inner domain: Ax = Ay = 3 km, 405 x 405 km
 Outer domain: 2880 x 2880 km

* Vertical layer:  (Ex-1) (EX-2)
Az =500 m Stretched Grid

z = 250, z = 25, 90,184,
750, 308,461, 644,
.., (M) 856, ...,(m)

* 50 vertical layers (height) (EX-1 & EX-2)

(EX-3)
Az = 250m



The full-physics simulations
Cloud Model 1 (CM1)

« |.C.: cloud free, circular vortex, thermal wind balance, no
environment wind

* Environment: near-moist-neutral sounding (Rotunno and Emanuel 1987)
e Constant F =5x 107° (s~ 1)
e Constant SST = 26.15 °C

Initial tangential winds
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Simulations Overview
EX-1

Azimuthal averaged tangential wind v i i

0 : . S
0 20 40 (L
Time (h) 535 h
Intensity: max v Height of max v: 750 m

L )
Intensification rate: a_: Max %; 5 m/s/hr



Simulations Overview
EX-1 and EX-2

EX-1 53 h EX-2 74 h
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The Eliassen model in brief

Physical meaning

For a slow evolution of an axisymmetric vortex
Forcing: tangential momentum (tangential momentum equation),
diabatic heating (heat equation)

Hydrostatic balance ]
Gradient wind balance —

Thermal wind balance

Thermal wind balance:

d C 0
EIOQ)('FEE

_ _§o _v .
log)(——gg C=—+fv X

D
<

Eliassen equation:

The forcing try to drive the vortex away from thermal wind
balance. The secondary circulation try to keep the vortex in
thermal wind balanced during the vortex evolving.



The Eliassen model in brief

Equations
0 (- 0p 1_0y\ 9 [(1_0yp _oyp\ .

5 2 6v+66)(

-~ pr X";az 0z
_ 1 dy X
C—prlf(ﬂf) +Cgl =20

: : 9, : 9, : 9, :
Forcing: ©= gE(XZH) + E(C)(ZH) + E(}({V)



The Eliassen model in brief

Forcing
0 (-0 1_0dy 0 (1_oy _oyp\ .
Forcing: 6 = g (x26) + = (Cx20) + — (xéV)
' ar 0z 0z

Diabatic heating (0): Tangential momentum(V):
o )_66+ 09+ 200 v ( )_6v+ LAY 4 dv

A= e T oy T W oz r2) =g tuCHtwe
Resolved eddy advection Resolved eddy advection
Latent heating Surface frictional stress
Radiation Subgrid-scale stress

(2-min simulation output)



The Eliassen model in brief

Regularization

o (0 1_0yY\ a/[1_0p _op\ .

Elliptic equation when AC — B% > 0,
otherwise symmetrically unstable

If A < 0, reset A to a small positive value,
If C <0, reset C to —0.001C
If the remaining points where AC — B* < 0, set B to zero.



The Eliassen model in brief

Experiments

Simth-balance Solution (S1):
Take v from the simulation.
Solve p, p, 6 in thermal wind balance.

Holton-balance Solution (H1):

Take p, p, 6 from the simulation.

_1p

02
Solve Vg (7g + fvg = ) (vy = 0if complex number are encountered)

;61"
Solve p, p, 6 in thermal wind balance.

Pseudobalance Solution (P1):
Take v, p, p, 6 from the simulation.
(Not in thermal wind balance)



Results

The forcing profiles

a) theta—dot (K h_1)
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Height (km)

Results

Regularization region

a) reqularized regions
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Results

Secondary Circulation

Both:

Low- and mid-level inflow
Upper-level outflow
Eyewall updraft

S1:
Smaller and thicker low-level inflow
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Results

Secondary Circulation

Both:

Low- and inflow
Upper-level outflow
Eyewall updraft

H1:

Smaller and thicker low-level inflow
Max inflow: -8.85 m/s at 36 km
Max outflow: 9.88 m/s
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Results

Secondary Circulation

Both:

Low- and mid-level inflow
Upper-level outflow
Eyewall updraft

P1:
Max inflow: -15.39 m/s at 27 km
Max outflow: 13.21 m/s

EX-1:
Max inflow: -16.07 m/s at 27 km
Max outflow: 14.01 m/s
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Results

v Jv .
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Simulations Overview

EX-3
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Results

Secondary Circulation

Both: EX-3
Low- and mid-level inflow
Upper-level outflow

Eyewall updraft T
H3: T
Smaller and thicker low-level inflow
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Results

Secondary Circulation

Both:

Low- and mid-level inflow
Upper-level outflow
Eyewall updraft
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Results

Tangential wind tendency

EX-3 & P3:
Spinup at BL
Spinup at RMW
Spinup at eyewall

H3:
Spindown at BL
Spinup outside RMW
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Results

Time variation of solutions — 7

Diagnose from 53 hto 56 h
2 min diagnostic interval
24 min averaged inputs

S1 underestimates peak inflow.

No relationsto the peak outflow.

. d
S1 underestlmatesa—:, but can

capture the trend.
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Results

v — H1

Time variation of solutions — —— EX-1

H1 underestimates peak inflow,
d
peak outflow, and a—:.

d
H1 can capture thea—: trend.
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Results —n

——— 1y  — EX1
Time variation of solutions — 7
Max v Peak inflow

b) Min—U :: EX—1(black), MP1(red)
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Summary

This study examined a claim by Heng et al. (2017) that “balanced dynamics
can well capture the secondary circulation in the full-physics model
simulation in the inner-core region in BL.”

The azimuthal averaged tangential momentum and diabatic heating from the
simulation were used to force Eliassen balanced model under strict balance
conditions.

Features in balance solutions:
1. Underestimate the peak inflow in BL —>  spindown
2. Over predict the radial location of peak inflow
3. Overestimate the thickness of inflow  ——> spinup
4. Inaccurately represent the structure of upper-layer outflow layer

Unbalanced and nonlinear BL dynamics
Inertial instability and regularization



Summary

The azimuthal averaged of the model output used in Eliassen model is the
result of a pseudobalance solution because of not in thermal wind balance.

In the long-time diagnoses, Eliassen model predicts spindown in the
inner-core region in the BL, but predicts spinup above the BL. The
pseudobalance solutions over predict spinup in the BL.

The Eliassen balanced model cannot capture the characteristics of TCs during
intensification. The nonlinear BL spinup mechanism is necessary.



