Improving Afternoon Thunderstorm Prediction over Taiwan through 3DVar-Based Radar and Surface Data Assimilation

I-HAN CHEN,^{a,b} JING-SHAN HONG,^a YA-TING TSAI,^a AND CHIN-TZU FONG^a

^a Central Weather Bureau, Taipei, Taiwan ^b Meteorologisches Institute, Ludwig-Maximilians-Universität, Munich, Germany

Outline

1. Introduction

- Paper review
- 4 questions
- 2. Description of cases, observational data, and verification methods
- 3. Designation of convective-scale data assimilation system
- 4. Experimental design
- 5. Results
 - Evaluation of the 10-day experiments (6/29 ~ 7/8)
 - Case study (7/6)
- 6. Summary To answer the 4 questions

1. Introduction

a. Paper review

• The characteristics of afternoon thunderstorms (ATs) in Taiwan

(1) The intensity can reach 131 mm/hr. (Miao and Yang 2020)

(2) The storms initiate at the ridge and propagate downslope.

(Jou 1994; Johnson and Bresch 1991; Chen et al. 2007; Lin et al. 2011)

• The key factors in AT initiation and development

(1) Land-sea breeze and local circulation are influential in AT initiation.

(Chen and Li 1995; Johnson and Bresch 1991; Lin et al. 2011; Chang et al. 2017)

(2) Cold pool and outflow boundary is critical in AT development.

(Hirt et al. 2020; Rotunno et al. 1988)

(3) The diurnal surface observation variations are apparently different in days with and without AT development.

(Lin et al. 2011)

1. Introduction

a. Paper review

• The issues on operational nowcasting for ATs

(1) Initial condition accuracy has large impacts on the model predictability.

(Sokol and Zacharov 2012; Sun et al. 2012; Tong et al. 2016)

(2) Radar observations are assimilated through <u>Rapid Update Cycles (RUC; Benjamin</u> et al. 2004), which is proved beneficial.

(Sun et al. 2010; Sun and Crook 1998)

(3) Surface observations assimilation is challenged by the mismatch of terrain height between the model and observations.

(Pu et al. 2013; Deng and Stull 2007)

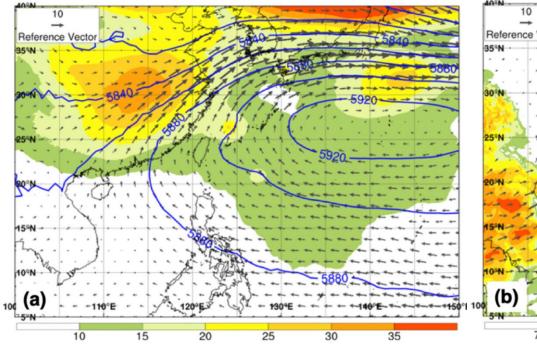
1. Introduction

b. Four questions in this paper

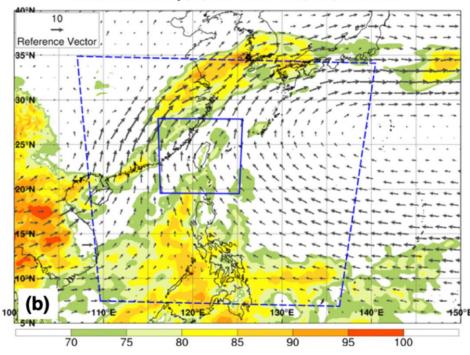
- Is the designation of the RUC strategy combined with a blending scheme (Yang 2005) effective in the nowcasting system?
- 2) Can surface data assimilation contribute positively to AT prediction under the complex geography of Taiwan island?
- 3) What is the relative importance between radar and surface observation to AT prediction? Does their combination add additional value?
- 4) Can we increase the AT forecast lead time in the morning through data assimilation? If so, which type of observation is more critical?

a. Consecutive afternoon thunderstorms – 29 June 2017 ~ 8 July 2017 (10 days)

- Taiwan was dominated by subtropical high.
- Typhoon Nanmadol passed east Taiwan.
- Disturbances around Taiwan could push moist air over land.

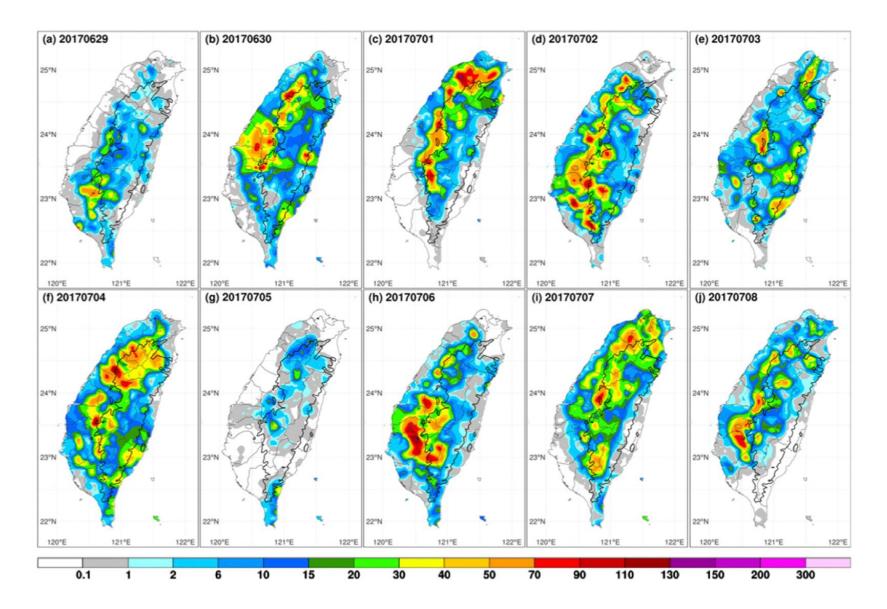


Geopotential Height(gpm), Spread(gpm) and Wind field(m s⁻¹) at 500 mb



Relative Humidity(%) and Wind field(m s⁻¹) at 850 mb

a. Consecutive afternoon thunderstorms – 29 June 2017 ~ 8 July 2017 (10 days)



a. Consecutive afternoon thunderstorms – 29 June 2017 ~ 8 July 2017 (10 days)

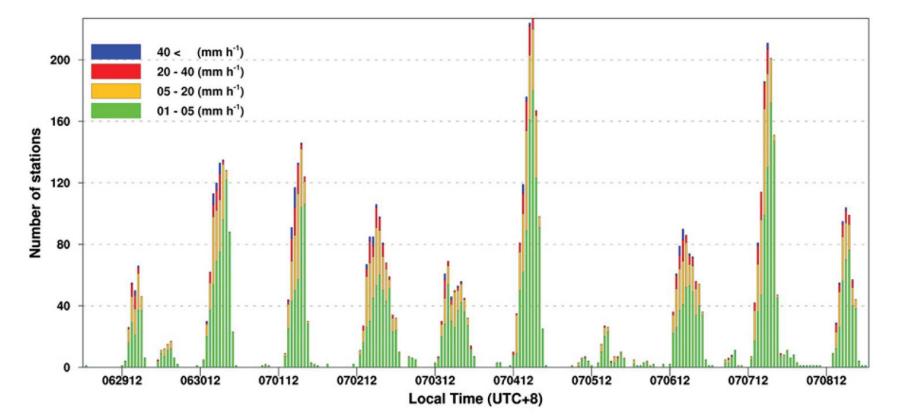
• AT life cycle

Initiated between 1300 ~ 1400

Matured between 1500 ~ 1700

Dissipated after 1800

- Short life span about 6hr
- High rainfall intensity 40 mm/hr



b. Surface and radar observations

• Surface observations

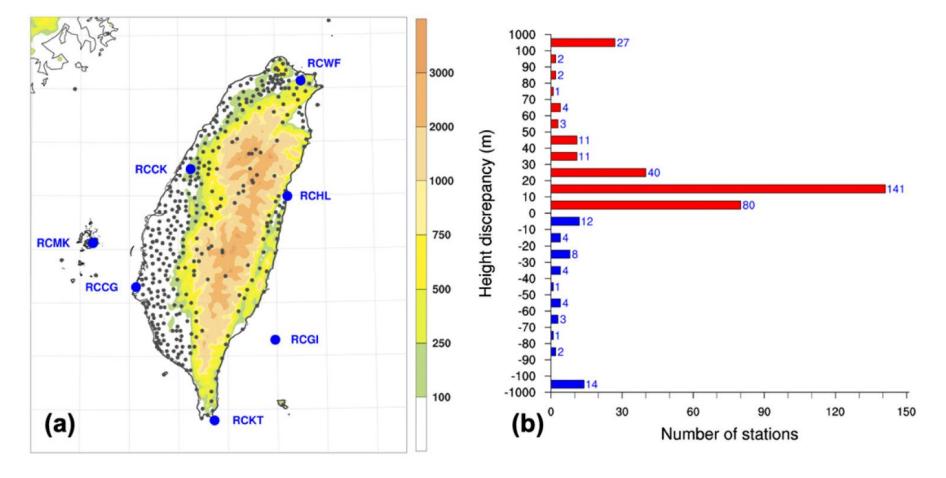
375 surface stations

U, V, P, T, RH are assimilated

• Height discrepancy correction

Stations with height mismatch > 100 m

were removed

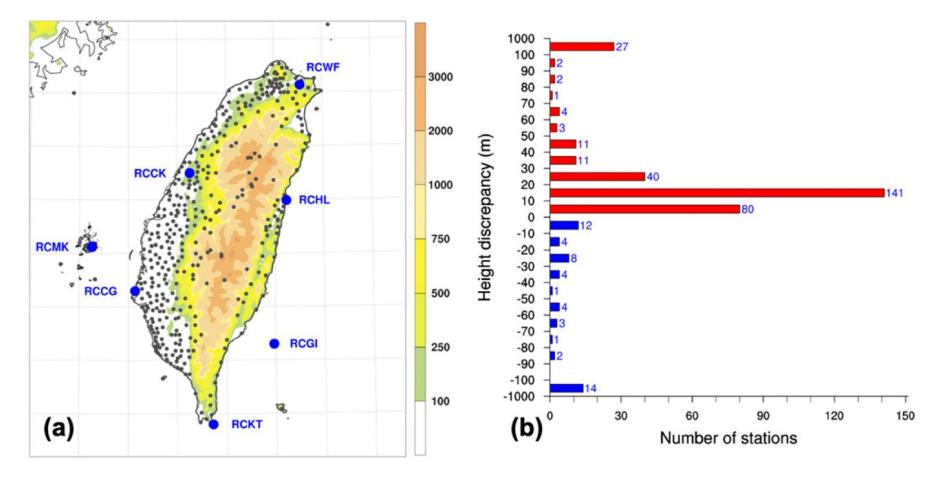


b. Surface and radar observations

• Radar observations

Radial wind and reflectivity are assimilated

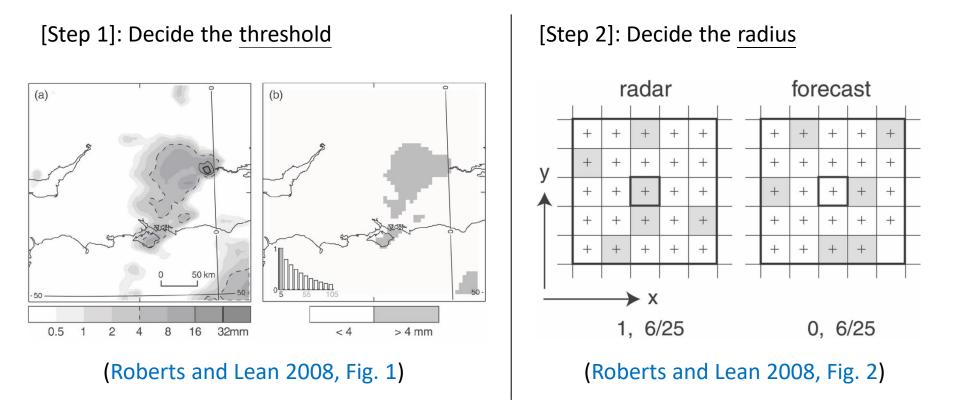
Reflectivity \rightarrow mixing ratio of rain, graupel, and snow (Wang et al. 2013)



c. Verification methods

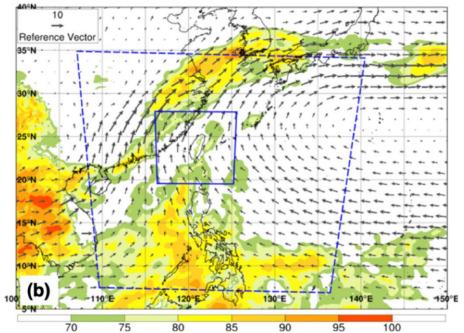
• Verification of quantitative precipitation forecast (QPF)

Neighborhood-based fractions skill score (FSS; Roberts and Lean 2008) is used



(Perfect) $1 \le FSS \le 0$ (No skill)

a. Configuration of the numerical model



Relative Humidity(%) and Wind field(m s⁻¹) at 850 mb

• Global reanalysis data:

NCEP GFS 0.25° analysis

- **10-km** mesh (- - -): 301 x 301
- **2-km** mesh (——): 451 x 451
- Vertical layers:

52 sigma levels

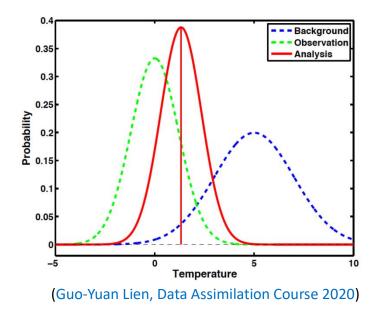
model top at 20 hPa

Both domain are independent (NOT nested)

PBL scheme	Microphysics	Shortwave and	Cumulus scheme
	scheme	longwave scheme	(10-km mesh)
YSU	Goddard	RRTMG	Kain-Fritsch

b. Configuration of data assimilation system (3D-Var)

• Concept of 3D-Var (Guo-Yuan Lien, Data Assimilation Course 2020)



$$L_{\sigma_{b}}(T||T_{b}) = p_{\sigma_{b}}(T_{b}|T) = \frac{1}{\sqrt{2\pi\sigma_{b}}} e^{-\frac{(T_{b}-T)^{2}}{2\sigma_{b}^{2}}}$$

$$L_{\sigma_{o}}(T||T_{o}) = p_{\sigma_{o}}(T_{o}|T) = \frac{1}{\sqrt{2\pi\sigma_{o}}} e^{-\frac{(T_{o}-T)^{2}}{2\sigma_{o}^{2}}}$$

$$\max_{T} L_{\sigma_{b},\sigma_{o}}(T||T_{b},T_{o}) = \frac{1}{2\pi\sigma_{b}\sigma_{o}} e^{-\frac{(T_{b}-T)^{2}}{2\sigma_{b}^{2}} - \frac{(T_{o}-T)^{2}}{2\sigma_{o}^{2}}}$$

$$J(T) = \frac{(T_{b}-T)^{2}}{2\sigma_{b}^{2}} + \frac{(T_{o}-T)^{2}}{2\sigma_{o}^{2}}$$

3D-Var cost function

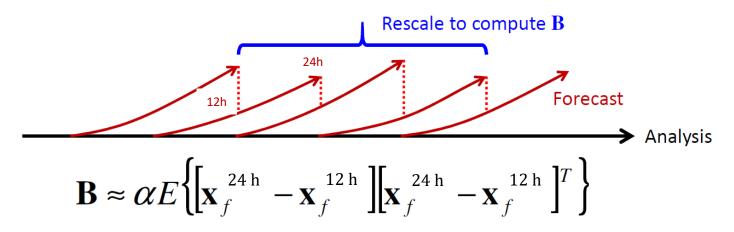
$$J(\mathbf{x}) = J_b + J_o = \frac{1}{2} (\mathbf{x} - \mathbf{x}^b)^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}^b) + \frac{1}{2} (\mathbf{y} - \mathbf{y}^o)^{\mathrm{T}} \mathbf{O}_i^{-1} (\mathbf{y} - \mathbf{y}^o)$$

B: Background error covariance (BEC)

O: Observation error covariance

b. Configuration of data assimilation system (3D-Var)

• To obtain Background Error Covariance (BEC) --- NMC method



(Guo-Yuan Lien, Data Assimilation Course 2020)

Prescribed observation error

Surface observation	Observation error	Gross check	
Wind	$1.5 \mathrm{ms^{-1}}$	$4.5 \mathrm{ms^{-1}}$	
Temperature	1 k	1.5 k	
Surface pressure	100 Pa	300 Pa	
Relative humidity	10%	10%	

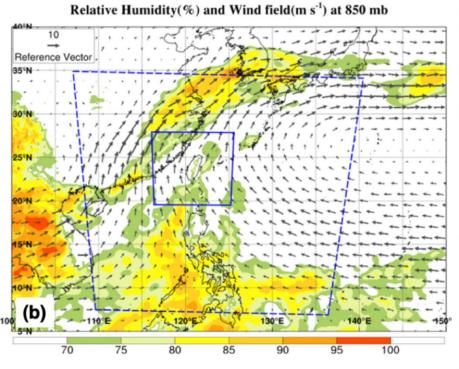
b. Configuration of data assimilation system (3D-Var)

• Single observation tests by laying pseudo observations at the lowest level

				e-folding length	
Model variable	Control variables	Innovation	Analysis increment	Horizontal (km)	Vertical (eta levels)
U component	U component	$3\mathrm{ms^{-1}}$	$1.91 \mathrm{ms^{-1}}$	24	14
V component	V component	$3 { m m s^{-1}}$	$1.92 \mathrm{ms^{-1}}$	20	15
Temperature	Temperature	2 K	0.55 K	22	8
Surface pressure	Surface pressure	300 Pa	98 Pa	34	Х
Water vapor mixing ratio	Pseudo-relative humidity	$20\mathrm{gkg^{-1}}$	$5.3{ m gkg^{-1}}$	22	9

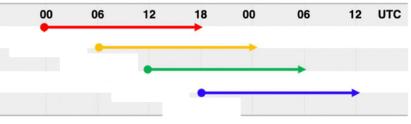
4. Experimental Design – NODA, CNTL, SFC, RADAR, SFC_RADAR

a. Forecast strategy for NODA



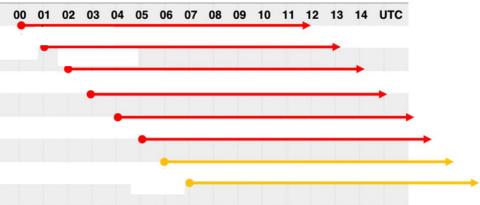
10-km mesh

Initialized from NCEP GFS, 18-hr forecast provides BDY and Blend_BG to 2-km mesh



2-km mesh

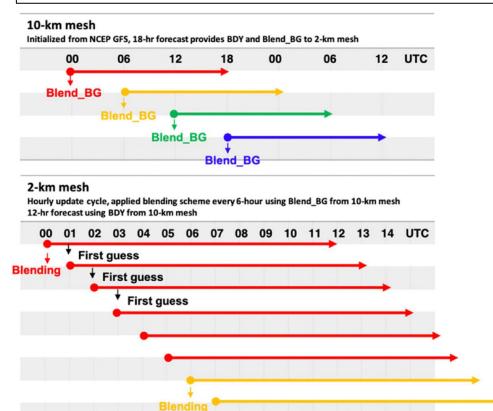
Hourly update cycle, applied blending scheme every 6-hour using Blend_BG from 10-km mesh 12-hr forecast using BDY from 10-km mesh



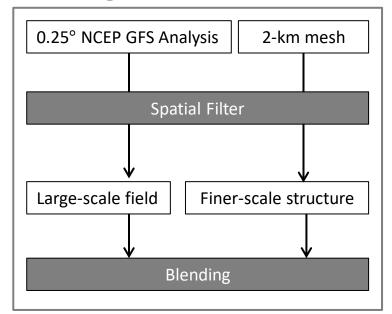
Expt	Radar DA	SFC DA	Blending scheme	First guess	Boundary condition
NODA	Ν	Ν	Ν	Downscale from 10-km forecast	Downscale from 10-km forecast
CNTL	Ν	Ν	Y	1-h forecast from previous run	
SFC	Ν	Y	Y	-	
RADAR	Y	Ν	Y		
SFC_RADAR	Y	Y	Y		

4. Experimental Design – NODA, CNTL, SFC, RADAR, SFC_RADAR

b. Forecast strategy for CNTL, SFC, RADAR, SFC_RADAR



Blending scheme



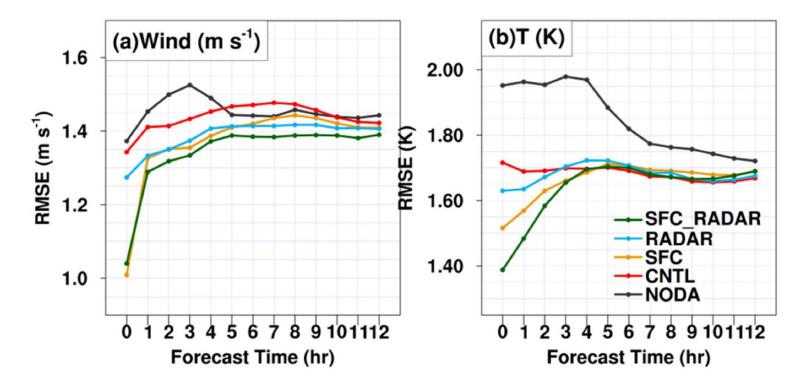
Expt	Radar DA	SFC DA	Blending scheme	First guess	Boundary condition
NODA	Ν	Ν	Ν	Downscale from 10-km forecast	Downscale from 10-km forecast
CNTL	Ν	Ν	Y	1-h forecast from previous run	
SFC	Ν	Y	Y	-	
RADAR	Y	Ν	Y		
SFC_RADAR	Y	Y	Y		

a. Evaluation of the 10-day experiments – Surface wind and temperature

- ① NODA has spin-up problem due to downscale interpolation
- **②** CNTL performs better than NODA

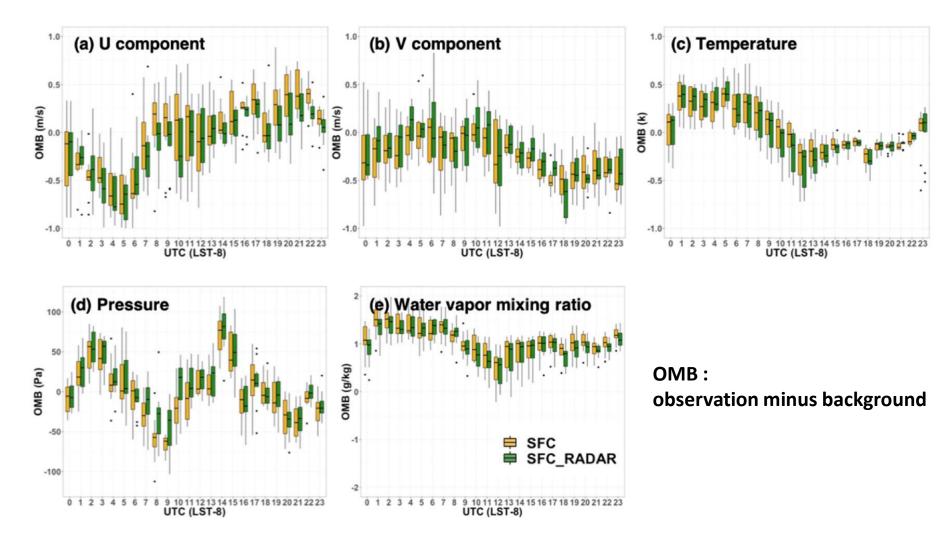
→ cycling strategy prevent imbalanced initial condition

- **③** SFC_RADAR > SFC > RADAR > CNTL > NODA
- **④** SFC_RADAR and SFC have 1h spin-up issue

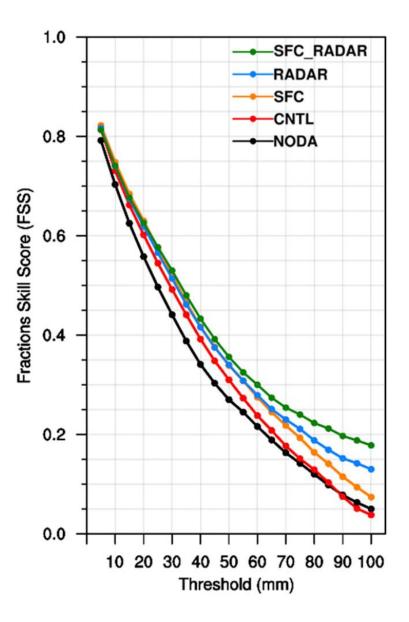


a. Evaluation of the 10-day experiments –10-day-averaged hourly innovation vectors

- ① Pressure and temperature have diurnal cycle
- **②** The model has dry bias



a. Evaluation of the 10-day experiments – 12h accumulated precipitation



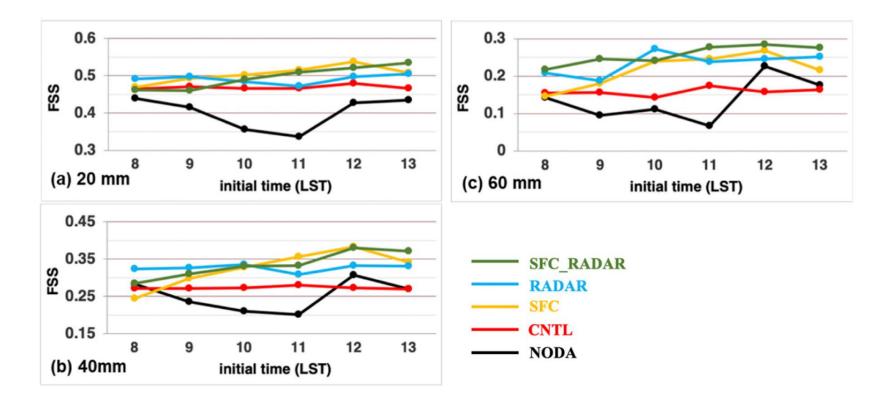
- ① SFC_RADAR > <u>RADAR > SFC</u> > CNTL > NODA
- ② RADAR \approx SFC for small rainfall (< 60 mm)
- ③ RADAR > SFC for heavy rainfall (> 60 mm)

a. Evaluation of the 10-day experiments - 1300~1700 accumulated precipitation

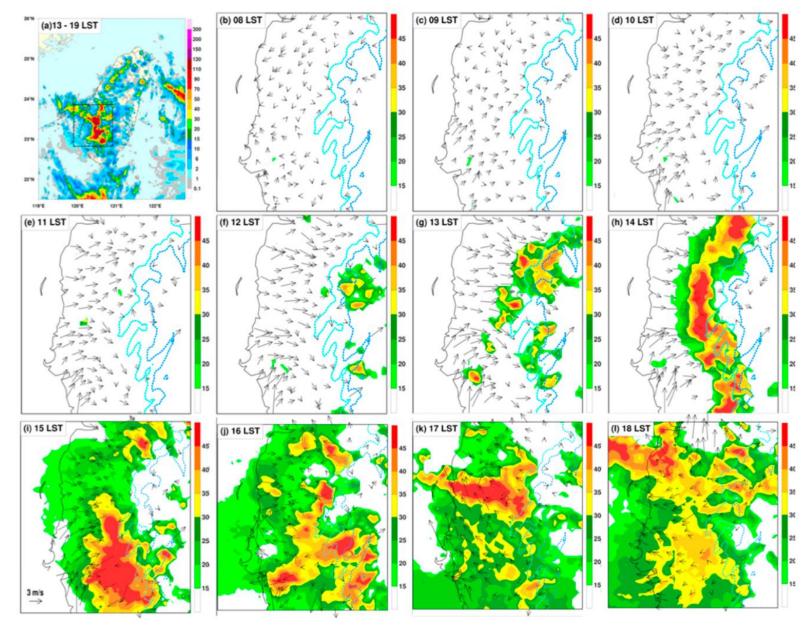
① CNTL performs better than NODA

 \rightarrow cycling strategy prevent imbalanced initial condition

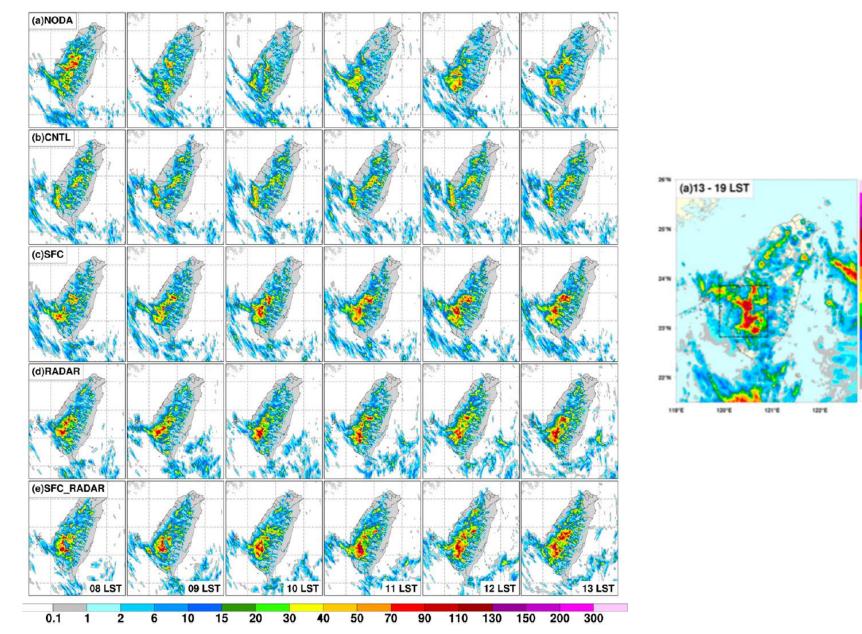
- **②** FSS in SFC and SFC_RADAR increase as lead time decrease
- **③** FSS in CNTL and RADAR remain constant as lead time decrease



b. Case study – AT in June 6

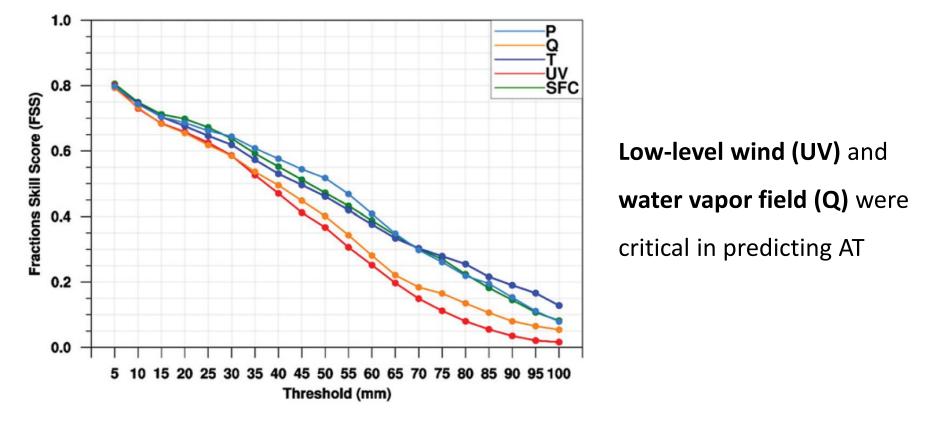


b. Case study – 6h accumulated precipitation from 1300~1900



b. Case study – test the relative importance of the variables

• One of the variables was excluded in assimilation



b. Case study – Wind and precipitable water vapor (PWV) between CNTL and SFC

Before 09 LST •

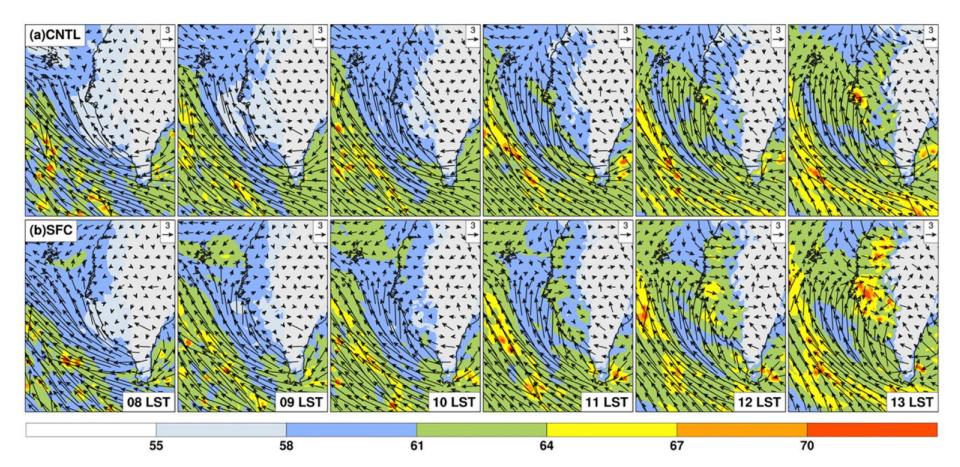
After 10 LST

•

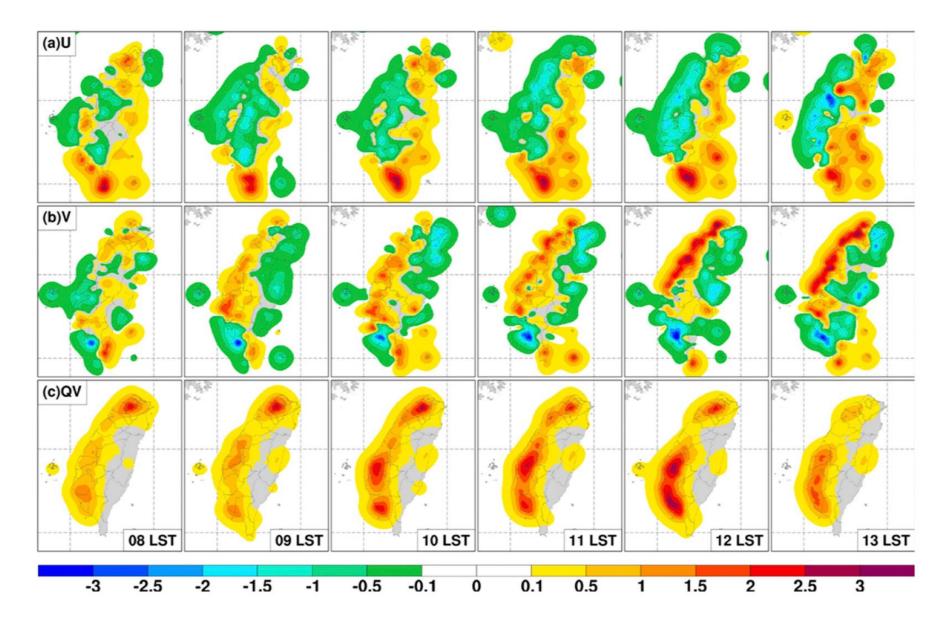
CNTL and SFC are similiar

SFC had more inland wind component

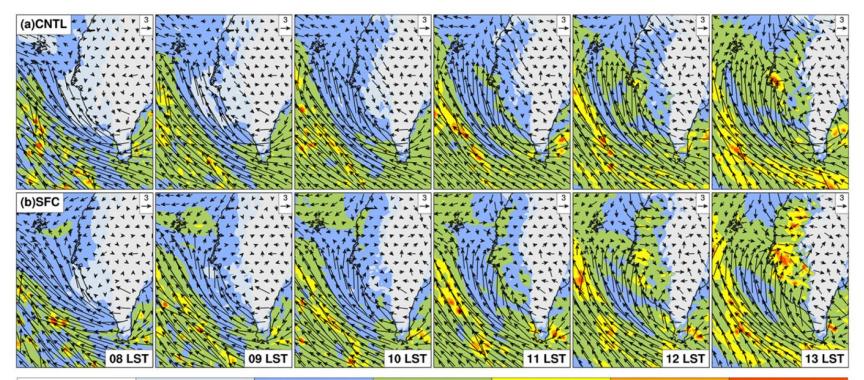
SFC had more precipitable water vapor over land

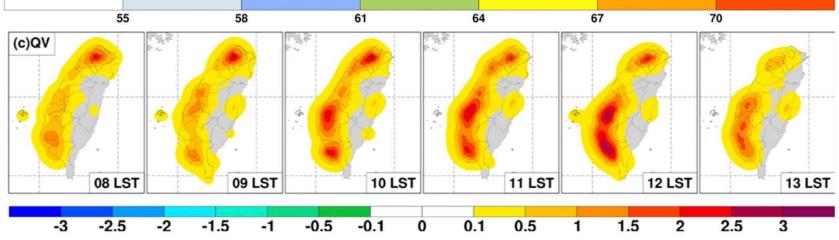


b. Case study – Analysis increment of U, V, and QV

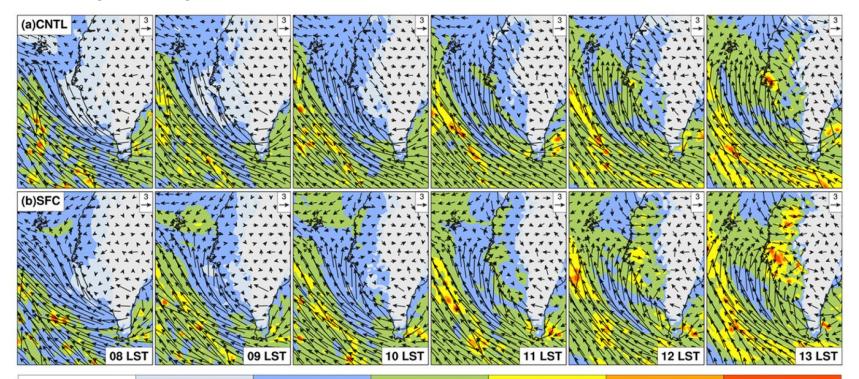


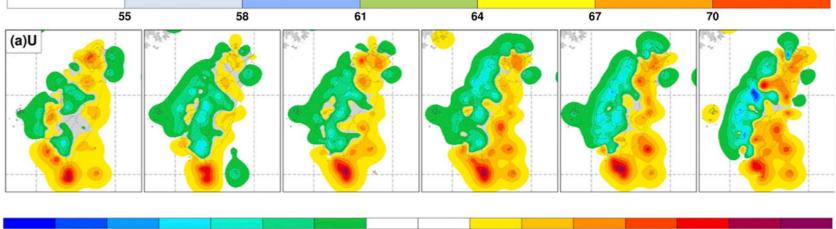
b. Case study – Analysis increment of QV





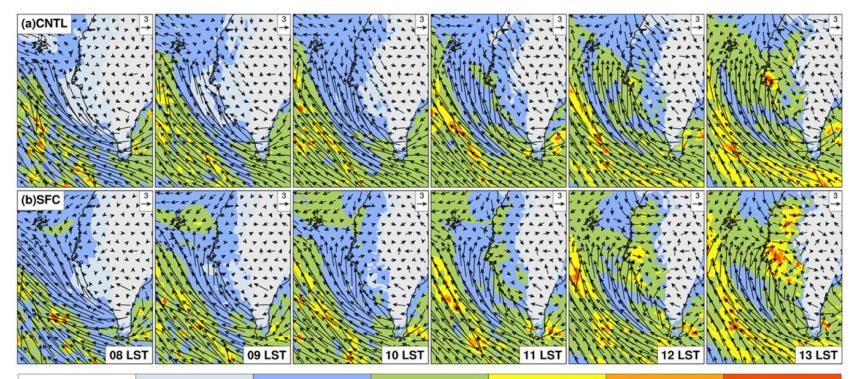
b. Case study – Analysis increment of U

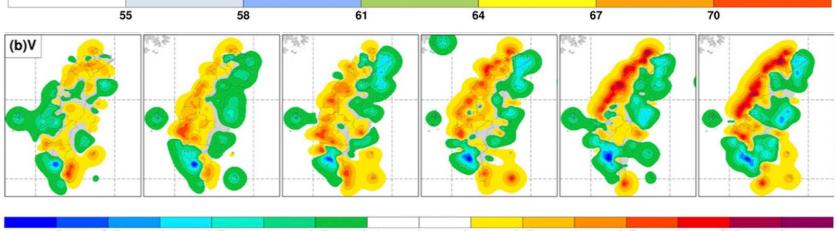




-3 -2.5 -2 -1.5 -1 -0.5 -0.1 0 0.1 0.5 1 1.5 2 2.5 3

b. Case study – Analysis increment of V

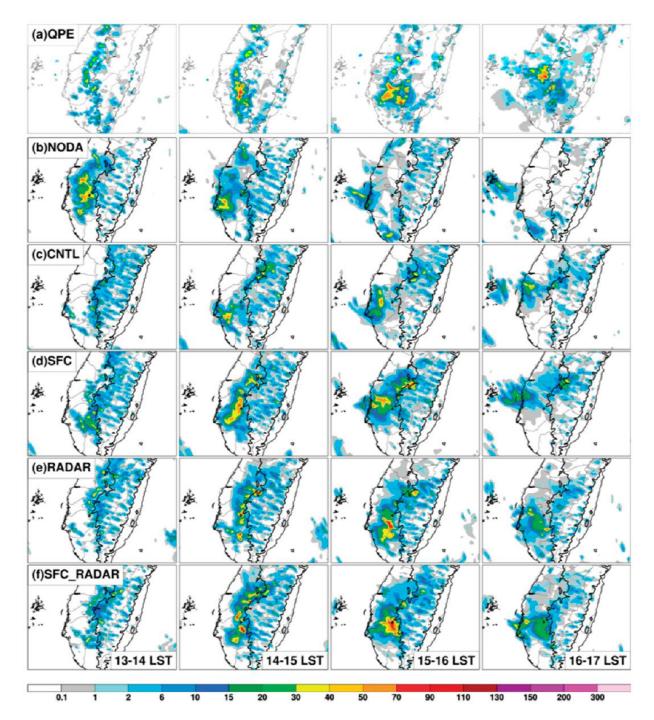




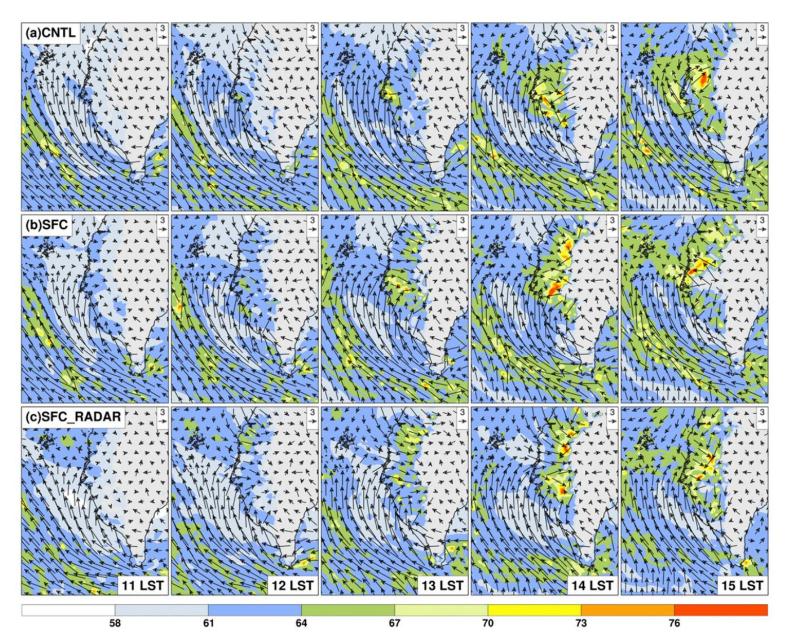
-3 -2.5 -2 -1.5 -1 -0.5 -0.1 0 0.1 0.5 1 1.5 2 2.5 3

b. Case study

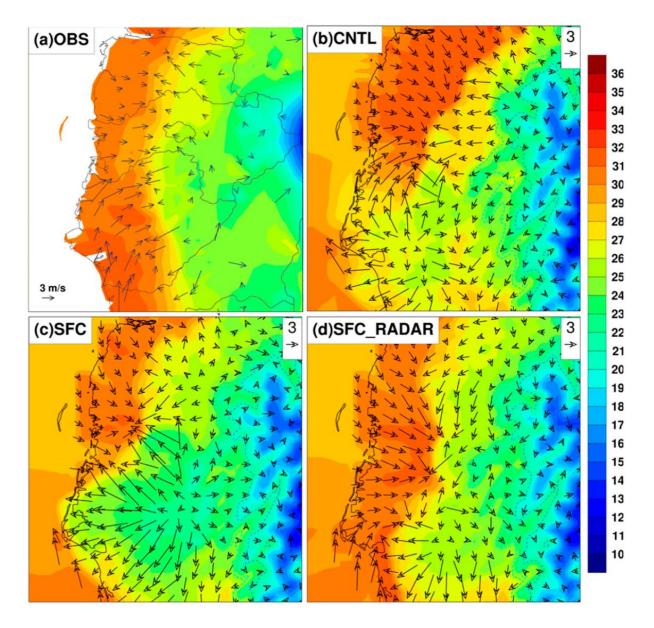
- Hourly accumulated rainfall
- Initiated at 1100 LST



b. Case study – Wind and precipitable water vapor between 3 experiments



b. Case study – Surface wind and temperature at 1500 LST



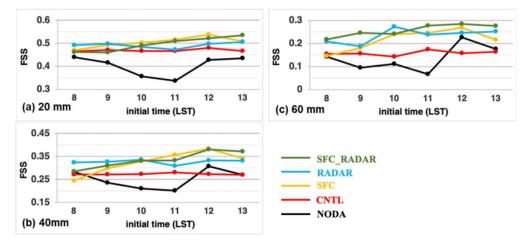
6. Summary

- 1) Is the designation of the RUC strategy combined with a blending scheme effective in the nowcasting system?
 - Comparing CNTL with NODA, RUC can mitigate model spin up resulting from downscale interpolation, which is detrimental for nowcasting.
 - Comparing CNTL with NODA, blending scheme can handle model accumulated errors properly.
- 2) Can surface data assimilation contribute positively to AT prediction under the complex geography of Taiwan island?
 - Surface variables and QPF are both improved in SFC compared to CNTL.
 - Assimilating relative humidity (RH) and wind (U,V) are more important than temperature (T) and pressure (P) in QPF.
 - However, the skill to forecast AT development is not improved.

6. Summary

- 3) What is the relative importance between radar and surface observation to AT prediction? Does their combination add additional value?
 - Surface observations can correct model near-surface errors every hour, which provides more accurate near-surface features for the subsequent AT.
 - Radar observations can provide more accurate first guess throughout the current cycling strategy.
 - SFC_RADAR performs the best in both surface variables and QPF.
- 4) Can we increase the AT forecast lead time in the morning through data

assimilation? If so, which type of observation is more critical?



- Radar observations can not improve FSS when lead time decrease.
- Surface observations can provide more accurate information for the following AT.