

The Potential Role of Atmospheric Bores and Gravity Waves in the Initiation and Maintenance of Nocturnal Convection over the Southern Great Plains

Parsons, Haghi, Halbert, Elmer (OU), and Wang (SUNY Albany)

GCMs cannot accurately represent Great Plains nocturnal precipitation!

Comments

---: GEM (CMC) hourly rain rate

Insufficient understanding of nocturnal MCSs contributes to such bias

- 1. "Weakly forced" weather regime
- Correlated with NLLJ above boundary 2. layer (Trier and Parsons 1993)
- 3. Bores could rejuvenate (Crook et al. 1990) or initiate (Wilson and Roberts 2006) convection by inducing ascent
- 4. Bores could determine propagation speed of simulated N. MCSs (French and Parker 2010)
- "Partially blocked" flow -> Interaction 5. between convective outflow and environment -> Bores (Haghi et al. 2017)

Comments

Insufficient understanding of nocturnal MCSs contributes to such bias

- 1. "Weakly forced" weather regime
- 2. Correlated with NLLJ above boundary layer (Trier and Parsons 1993)
- 3. Bores could rejuvenate (Crook et al. 1990) or initiate (Wilson and Roberts) convection by inducing ascent
- 4. Bores could determine propagation speed of simulated N. MCSs (French and Parker 2010)
- 5. "Partially blocked" flow -> Interaction between convective outflow and environment -> Bores (Haghi et al. 2017)

Other potential mechanisms...

- 1. Ascent driven by NLLJ (Pu and Dickinson 2014; Shapiro et al. 2018)
- 2. Pressure Tides (Dai et al. 1999)
- 3. Propagating GWs from the Rockies (Carbone and Tuttle 2008)
- 4. Eastward-moving PV anomalies (Li and Smith 2010)
- 5. NLLJ overrunning an zonal stationary front (Trier and Parsons 1993)

IHOP_2002 (Weckwerth et al. 2004) Observational Dataset

Hotspot for Nocturnal Convective Development

Results

Conclusions

Comments

Estimating Layer Displacement with MAPR

Results

Conclusions

Comments

Diurnal Variations in Convective Instabilities

Composite diurnal cycles for days when $v_{<1km} > 15 m s^{-1}$

How do they stack up with wind profiles?

Composite diurnal cycles for days when v<1km >15 m s⁻¹

The observed wind evolution agrees with theoretical calculations

Inertial oscillation in the NLLJ ageostrophic component (Blackadar 1957)

Thermal forcing over sloped terrain (Holton 1967)

Can the Great Plains nocturnal precipitation be purely caused by large-scale factors?

- 1. Ascent driven by NLLJ (Pu and Dickinson 2014; Shapiro et al. 2018)
- 2. Pressure Tides (Dai et al. 1999)
- 3. Propagating GWs from the Rockies (Carbone and Tuttle 2008)
- 4. Eastward-moving PV anomalies (Li and Smith 2010)
- 5. NLLJ overrunning an zonal stationary front (Trier and Parsons 1993)

Large-scale factors could not create a *particularly unstable* environment!

Overview of Fluid Regimes in the IHOP_2002 dataset

Results

Conclusions

Comments

Η h_0

Methodology

Fluid Regime Evolution during IHOP_2002 (Haghi et al. 2017)

: Time evolution of **Fr**, **H** during IHOP_2002

Methodology

Fluid Regime Evolution during IHOP_2002 (Haghi et al. 2017)

: Time evolution of **Fr**, **H** during IHOP_2002

Differences from H17

1. P08, FP10: Bore speed~20-30 ms⁻¹

H17: Median Bore speed~11 ms⁻¹ (59 cases)

2. P08, FP10: Small CAPE in the lowest 1.5 km, high CAPE between 1.5-2 km

H17: Positive CAPE in the boundary layer, smaller CIN aloft

Lifting observed by the MAPR

Event No.	Date	Description	Start (LST)	Initial (km)	Max (km)	Time to max (min)	Final (km)	Time to final (rains)	Duration (min)
1	2 Jun	Single	0050	1.4	2.5	30	2.5	50	
		C C	0045	1.7	3.4	30	2.9	45	275
			0015	1.7	>4.0		>4.0	_	
2	2 Jun	Undular	2040	0.7	1.6	30			
			2015	1.7	2.8	25	2.2	45	125^{a}
			2010	2.5	>4.0		>4.0	—	
3	2 Jun	Undular	2350	0.2	0.6	30	0.4	60	
			2350	1.3	2.6	60	2.4	60	
4	3 Jun	Single	0345	0.7	1.5	55	1.5	55	65 ^b
5	3 Jun	Undular	0745	0.5	1.2	60	0.8	120	145°
6	4 Jun	Undular	0030	0.5	1.3	45	0.8	110	
			0025	1.0	2.4	105	2.4	105	190
			0020	1.9	>4.0		_	—	
7	4 Jun	Undular	0445	1.0	1.7	30	1.5	60	
			0445	2.0	2.5	10	2.3	35	150°
8	4 Jun	Undular	0450	1.0	1.8	20^{b}	—	—	
9	12 Jun	Undular	0320	0.1	0.7	20	_	—	
			0310	0.5	1.1	45	—	—	140
			0310	1.1	1.7	40	1.4	60	
10	19 Jun	Undular	2350	2.1	2.8	35	2.4	50	
			2350	2.4	3.4	30	3.2	50	310^{d}
			2345	2.6	3.8	30	3.5	55	
11	20 Jun	Undular	0525	1.4	2.1	50	2.1	50	
			0525	1.5	2.1	50	2.1	50	150
			0500	2.6	3.6	95	3.6	05	
			0440	3.5	4.0	60	3.6	100	150
12	20 Jun	Undular	2140	1.7	3.4	65	2.4	115	185
13	25 Jun	Single	0005	3.2	>5.0	20	~ 4.5	60	$60^{\rm e}$
				Mean max. displacement	892 m	Mean net displacement	658 m	Mean duration	179.5 min

^a Layer was no longer continuous due to mixing.

^b Layer was no longer continuous due to precipitation.

^c Layer lasted into the following morning and was impacted by surface heating. ^d Layer was no longer continuous due to arrival of the next disturbance. ^e Scattering layer weakened.

Results

TABLE 1. Displacement of scattering layer in MAPR and the FMCW.

Lifting observed by the MAPR

Event No.	Date	Description	Start (LST)	Initial (km)	Max (km)	Time to max (min)	Fina
1	2 Jun	Single	0050	1.4	2.5	30	
		C	0045	1.7	3.4	30	
			0015	1.7	>4.0	_	>
2	2 Jun	Undular	2040	0.7	1.6	30	
			2015	1.7	2.8	25	
			2010	2.5	>4.0		>
3	2 Jun	Undular	2350	0.2	0.6	30	
			2350	1.3	2.6	60	
4	3 Jun	Single	0345	0.7	1.5	55	
5	3 Jun	Undular	0745	0.5	1.2	60	
6	4 Jun	Undular	0030	0.5	1.3	45	
			0025	1.0	2.4	105	
			0020	1.9	>4.0	_	
7	4 Jun	Undular	0445	1.0	1.7	30	
			0445	2.0	2.5	10	
8	4 Jun	Undular	0450	1.0	1.8	20^{b}	
9	12 Jun	Undular	0320	0.1	0.7	20	
			0310	0.5	1.1	45	
			0310	1.1	1.7	40	
10	19 Jun	Undular	2350	2.1	2.8	35	
			2350	2.4	3.4	30	
			2345	2.6	3.8	30	
11	20 Jun	Undular	0525	1.4	2.1	50	
			0525	1.5	2.1	50	
			0500	2.6	3.6	95	
			0440	3.5	4.0	60	
12	20 Jun	Undular	2140	1.7	3.4	65	
13	25 Jun	Single	0005	3.2	>5.0	20	-
				Mean max. displacement	892 m	Mean net displacement	6

TABLE 1. Displacement of scattering layer in MAPR and the FMCW.

^a Layer was no longer continuous due to mixing.

^b Layer was no longer continuous due to precipitation. ^c Layer lasted into the following morning and was impacted by surface heating. ^d Layer was no longer continuous due to arrival of the next disturbance.

^e Scattering layer weakened.

Conclusions

Results

Initial Layer Height (m)

Methodology

Examples of Observed Wave Events during IHOP_2002

Examples of Observed Wave Events during IHOP_2002

C: Radar Reflectivity (dBZ) at 2015 LST 3 Jun 2002

Comments

Low-frequency GWs generated by buoyancy convection (Nicholls et al. 1991; Fovell 2002)

Examples of Observed Wave Events during IHOP_2002

Control Reflectivity (dBZ) at 2130 LST 3 Jun 2002

Conclusions

Comments

Case 2: 2002-06-03

Most likely bore lifting.

Methodology

Examples of Observed Wave Events during IHOP_2002

Results

Case 8: 2002-06-04

- Lifting at three distinct heights
- Wave amplitude increased with time
- Lifting aloft in phase with bore lifting
- Wave structure aloft: "indirect influence" of bore (Koch et al. 2008)? Multiple wave ducts (Haghi et al. 2017)?
- Ascent associated with wave features could enhance deep-layer shear -> maintain lifting (Parker 2008)

Wave ducts and energy trapping associated with lifting events

Taylor-Goldstein Equation (Governs the vertical structures of wave perturbation)

Wave ducts and energy trapping associated with lifting events

Wave ducts and energy trapping associated with lifting events

Methodology

Waves and Convection (20 Jun 2002 Case)

1930LST

Results

Conclusions

Comments

2130LST

Methodology

Waves and Convection (20 Jun 2002 Case)

Waves and Convection (20 Jun 2002 Case)

Results

Conclusions

Comments

Waves and Convection (20 Jun 2002 Case)

- ---- : 1200 LST sounding (next afternoon)
- : 1830 LST sounding

Waves and Convection (4 Jun 2002 Case)

Results

Conclusions

Comments

Quantified the impact of bore lifting on stability profiles

Calculate CAPE/CIN for every height level

Alter sounding profiles

Results

Conclusions

Comments

$$=H-\frac{1}{2}\frac{u_1^2}{g'h_0}+\frac{3}{2}(\frac{h_1}{h_0}\frac{u_1}{(g'h_0)^{\frac{1}{2}}})^{\frac{2}{3}}$$

$$\frac{1}{\frac{1}{2}} = \left[\frac{1}{2}\left(\frac{h_{bore}}{h_{NBL}}\right)\left(1 + \frac{h_{bore}}{h_{NBL}}\right)\right]^{\frac{1}{2}}$$

$$\frac{1}{p^{\frac{1}{2}}} = Fr - (1 - \frac{h_{NBL}}{h_{bore}}) \frac{C}{(g'h_0)^{\frac{1}{2}}}$$

Rottman and Simpson (1989)

Determine Bore Height

 $w = sin(m_1 z)$ $= sin(m_1 z_1 e^{-m_2(z-z_1)})$

Quantified the impact of bore lifting on stability profiles (4 Jun 2002 Case)

Convective-Environment Interaction via Wave Dynamics

- Lifting of elevated layer(s) with substantial CAPE/*low CIN* common during the *IHOP_2002* field campaign
- Co-existence of bore and low-frequency GWs. Role of GWs possibly more important than previously expected.
- Sustained layer displacement in the wake of bore fronts

Bore Lifting Aiding the Maintenance of Convection

- **Critical** moisture layer in response to stabilizing NBL?
- Suitable observational technique on detecting elevated GW lifting event?
- Nocturnal convection in other weather regimes. (e.g. nocturnal convection over closed/semi-closed water surfaces)
- Bore generation between colliding MCS outflow and land/sea breeze?
- Role of wave-induced ascent for Mei-yu systems? (Liu and Moncrieff 2017)

Holle and Murphy (2017)

Results

0600-0900 LST

1500-1800 LST 0000-0300 LST

Titicaca

Strokes km⁻² yr⁻¹ 0.04 0.08 0.16 0.32 0.64 1.28 2.56 5.12 10.2 20.5 41.0 81.9

