

Shear-Parallel Mesoscale Convective Systems in a Moist Low-Inhibition Mei-Yu Front Environment

Liu and Moncrieff (2017 JAS)

Introduction

- Balance of lower-tropospheric wind shear and strength of evaporation-generated cold pool is highly important in governing TS squall line organization (Rotunno et al. 1988; RKW theory)
- For other types of convective systems (eg. TL-AS MCS), the mechanism regulating their organization (eg. back-building) is highly dependent on near-surface cold outflow (Parker 2007a)
- Role of cold pool much more uncertain in Mei-yu front environment!
- Crucial characteristic of mei-yu front environment is the nearly-saturated low troposphere -> Limited evaporative cooling and weakened density current

Past results on MCSs in near-saturated environments

- i. Lack of cold pool forcing increases the importance of other processes (eg. mesoscale forcing. gravity wave) [Crook and Moncrieff 1988]
- ii. Studies for quasi-stationary heavily raining MCS suggests that convectively-generated gravity wave forcing is influential for flow organization [Schumacher and Johnson 2008; Schumacher 2009, 2015]
- iii. Fovell et al. (2006) has established the relationship between gravity wave forcing and the observed "convective initialization prior to squall line gust front" phenomenon

Experiment Design

- WRF model [2401x1801x101 grid points, (0.5km horizontal, 0.2km vertical)
- Sounding used previously by Yamasaki (2009)
 used to simulate a 2004 mei-yu rainband,
 under strong westerly shear
- Mei-yu environment is approximated by the following perturbation equations:

$$\theta(x, y, z) = \Delta \theta \cos^2[(\pi/2) \times RAD], \quad RAD \le 1,$$
 (1)

RAD={
$$[(x - x_c)/100]^2 + [(y - y_c)/100]^2 + (z - z_c)^2$$
}^{1/2}

$$q_v(x, y, z) = Q_v(z) \{0.85 + 0.15 \exp[-(y/100)^2]\},$$
 (2)

- These equations define a 200-km-wide moisture front, corresponding to a Tv gradient of ~0.3K/100km
- 1 sensitivity test (No rainwater evaporative cooling)

Initialized sounding

Does weak cold pool play a role?

Turning off rainwater evaporation -> Less diabatic cooling to neutralize latent heat release-> Stronger MCS

- System evolution similar to CTRL (initial downstream propagation due to ambient wind advection -> quasistationary -> slow upstream propagation)
- MCS is narrower than CTRL and extends further upstream
- Much heavier precipitation and precipitation seems to be "locked" along moisture front
- Shear-parallel, quasi-stationary, elongated rainband is produced is both simulations

Surface precipitation

- Strong convective precip centered on moisture front, weak stratiform precip downstream
- Quasi-stationary MCS moves upstream slowly due to repeated convective initiation
- The overall structure similar to backbuilding/parallel-stratiform MCS (Parker 2007a,b; Wang et al. 2014)
- The MCS is characterized by "upstream building" as cells regenerate to the east of MCS system

Mesoscale kinematic and thermodynamic characteristics

- (a) Condensate (shading, g/kg) and u-wind perturbation (contours)
- (b) Vertical Velocity (shading, m/s) and RH (contours)
- (c) Potential temperature perturbation (shading, oC)
- (d) Pressure perturbations (shading, Pa)

Gravity-waves-generated lifting

Nicholls et al. (1991)

Fovell et al. (2006)

Does weak cold pool play a role?

Gravity wave activity I. Upstream-propagating deep mode

Vertical Velocity [Contours - Updraft (solid), downdraft (dashed)]
Potential Temperature Perturbation (Shading)

Relative Humidity > 98% (Green Contours at 5.5hr)
Cloud Boundary (Black Contours at 5.5hr)

Gravity wave activity I. Upstream-propagating deep mode

- Trajectories of 200 parcels released upstream of MCS
- (a) Altitude time in W-E direction
- (b) Altitude changes with time

Vertical Velocity (Contours, cm/s)
Potential temperature perturbation (shading)

X-axis wind component (contours, m/s) Cloud Boundaries (Green contours)

1km vertical velocity (cm/s)

$$\frac{\partial \theta'}{\partial t} + U \frac{\partial \theta'}{\partial x} + \frac{N^2 \theta_0}{g} w' = \frac{\theta_0}{c_p T_0} q', \qquad (2)$$

$$q' = \frac{c_p T_0 N^2}{g} \varepsilon w' \alpha, \qquad (3)$$

$$\varepsilon = 1 - \frac{N_w^2}{N^2},$$

$$N^2 = \frac{g}{\overline{T}} (\Gamma_d - \Gamma),$$

$$N_w^2 = \frac{g}{\overline{T}} (\Gamma_s - \Gamma),$$

$$\alpha = \begin{cases} 1 & \text{if } w' > 0 \\ 0 & \text{if } w' < 0. \end{cases}$$

$$rac{\partial heta'}{\partial t} = -U rac{\partial heta'}{\partial x} - rac{N^2 heta_0}{g} (1 - arepsilon lpha) w'.$$

$$\frac{d^2\hat{w}}{dz^2} - \left(k^2 - \frac{N^2}{(U-c)^2} + \frac{U_{zz}}{U-c}\right)\hat{w} = \frac{g\hat{q}}{c_p T_0 (U-c)^2}.$$

$$\hat{w} = \frac{D\eta}{Dt} \quad \text{or} \quad w = ik(U-c)\eta.$$

$$2 \int_{z_1}^{z_2} c_i (U - c_r) \left(\left| \frac{d\eta}{dz} \right|^2 + k^2 |\eta|^2 \right) dz$$

$$= \operatorname{Im} \int_{z_1}^{z_2} \frac{-iQ\eta^*}{k(U - c)} dz,$$

$$Q = Fe^{i\beta}w'$$

$$\int_{z_1}^{z_2} g|\eta|^2 F \sin\beta \, dz.$$

If there is no phase difference between Q, w' (beta=0)

Either: (1) ci=0 (disturbance cannot amplify) (2) U-cr=0 (Existence of critical level)

$$l^{2} = N^{2}/(U-c)^{2} - U_{zz}/(U-c).$$

Upstream scorer parameter across moisture front (10^-6 m^-2)

Summarizing gravity wave's role

High-frequency GW

Destabilizes
environment (cooling
tendency in moist low
troposphere, creating
shallow cloud deck
upstream)

Low-frequency GW

Triggering boundary layer cumulus cloud within the pre-conditioned saturated layer

Disparities between simulated system and Fovell et al. (2006)

- New CI triggered ahead of gust front can be harmful to F06's system by undercutting unstable air inflow; GW cell triggering is vital in this study
- GWs in F06 originated from parent storm, move upstream, trigger new convection; Highfrequency GWs in this study is excited upstream by boundary layer cumulus and moves downstream by ambient wind
- Wave-ducting mechanism in F06 is uppertropospheric outflow from MCS; Background flow curvature in this study

Some remaining issues & MCS 3D structure

Line-normal wind (contour+vector) averaged between 9.5-10.5h

Line-parallel (u-wind) momentum transport vertical profile along moisture front

Some remaining issues & MCS 3D structure

- Rear-to-front downdraft completely absent in simulated MCS
- MCS propagates in wavelike manner
- Most boundary layer parcels are transported to 12-14km by jump updraft, a portion descends in updown flow
- Most parcels above 6km traverse system in throughflow branch with small lifting
- 3D spatial & airflow structure, wavelike propagation similar to Moncrieff and Lane (2015)
- Upstream-building, shear-parallel evolution and strong transverse circulation resemble Dudhia and Moncrieff (1987), Khouider and Moncrieff (2015)

THE

ENID

Thank you for listening