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Abstract Recently, a track-similarity-based Dynamical-Statistical Ensemble Forecast (LTP_DSEF) model has been developed
in an attempt to predict heavy rainfall from Landfalling Tropical cyclones (LTCs). In this study, the LTP_DSEF model is applied
to predicting heavy precipitation associated with 10 LTCs occurring over China in 2018. The best forecast scheme of the model
with optimized parameters is obtained after testing 3452 different schemes for the 10 LTCs. Then, its performance is compared to
that of three operational dynamical models. Results show that the LTP_DSEF model has advantages over the three dynamical
models in predicting heavy precipitation accumulated after landfall, especially for rainfall amounts greater than 250 mm. The
model also provides superior or slightly inferior heavy rainfall forecast performance for individual LTCs compared to the three
dynamical models. In particular, the LTP_DSEF model can predict heavy rainfall with valuable threat scores associated with
certain LTCs, which is not possible with the three dynamical models. Moreover, the model can reasonably capture the dis-
tribution of heavier accumulated rainfall, albeit with widespread coverage compared to observations. The preliminary results
suggest that the LTP_DSEF model can provide useful forecast guidance for heavy accumulated rainfall of LTCs despite its
limited variables included in the model.
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1. Introduction

A tropical cyclone (TC) is a rapidly rotating convective
storm that develops over vast tropical oceans, and is one of
the most dangerous natural hazards to human society and the
environment. It devastates coastal regions, and causes floods
and inland erosion through its strong winds, storm surges,
and particularly heavy rainfall after landfall (Jiang and

Zipser, 2010; Chen and Xu, 2017). Therefore, it is extremely
important to improve our ability to forecast heavy pre-
cipitation of landfalling tropical cyclones (LTCs) with high
priority.
Three approaches have been used for LTC precipitation

forecasts: numerical weather prediction (NWP) by dynami-
cal models, statistical models, and a combination of dyna-
mical and statistical models (i.e., the dynamical-statistical
method) (Ren and Xiang, 2017). For the first approach, some
studies have focused on data assimilation to improve the
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quality of initial fields (Xiao et al., 2007; Zhao et al., 2012;
Zhang and Pu, 2014) while others invoke improving para-
meterization schemes for physical processes (Tuleya et al.,
2016) or exploring effective ensemble methods (Zhang et al.,
2010; Hsiao et al., 2013; Hong et al., 2015). Since pre-
cipitation is an end product involving complicated multi-
scale interactions from larger-scale flows to cumulus con-
vection, and cloud microphysical processes (Zhang et al.,
1994; Liu et al., 1997), current dynamical models do not
include the associated physical processes at all scales (Gao et
al., 2013). In addition, owing to the complicated convective
structures in TCs, limited model resolution, and lacking
observations over vast oceans, dynamical models have lim-
ited capability to predict LTC precipitation and it is chal-
lenging to make breakthroughs in its forecasting skills
(Tuleya et al., 2007; Marchok et al., 2007; Wang et al., 2012).
In contrast, in some statistical models, integration, extra-
polation, principal component analysis (Wei, 2012), and
stepwise regression (Huang et al., 2018) are used to provide
quantitative precipitation forecasts for LTCs (Li et al., 2015).
However, this approach lacks physical basis and nonlinearity
in dynamics; therefore, it does not consistently perform well
in LTC precipitation forecasts despite the use of a large
amount of historical data.
Because of the above-mentioned strengths and weaknesses

associated with the statistical and dynamical approaches, a
combination of the two (i.e., the dynamical-statistical ap-
proach) has been adopted to predict LTC rainfall. Koo (1958)
suggested that NWP may be treated as a problem of “initial-
value” and “evolution” so that the historical data can be
introduced to improve weather forecasts. Chou (1974, 1986)
further indicated that the dynamical-statistical approach re-
presents an important advancement in weather prediction
technology, whose essence is to reduce the prediction error in
numerical models by introducing historical observations.
This approach has proven to be a promising research area
because it has a sound physical basis and utilizes a huge
amount of historical data.
There have been three schools of the dynamical-statistical

model development for TC rainfall forecasts (Ren and
Xiang, 2017). The first school makes TC rainfall forecasts
from the perspective of a climate mean by combining TC
track forecasts from dynamical models and historical rainfall
observations (Marks et al., 2002; Lee et al., 2006; Lonfat et
al., 2007). The second school predicts TC rainfall by
adopting TC track forecasts and the rainfall integration from
initial rainfall rates (Kidder et al., 2005; Liu, 2009; Ebert et
al., 2011). The third group forecasts TC rainfall by con-
structing a dynamical-statistical scheme that consists of
various internal TC variables and its environmental fields (Li
and Zhao, 2009; Zhong et al., 2009).
The steady improvement in TC track forecasts has been the

most successful achievement in operational NWP models

over the past 30 years (Rappaport et al., 2009; Langmack et
al., 2012; Cangialosi and Franklin, 2015; Peng et al., 2017).
Considering the close relationship between TC tracks and
rainfall, improvements to dynamical-statistical models for
predicting TC rainfall would depend on the effectiveness of
combining TC track forecasts with massive historical ob-
servations. Although TC track forecasts have been adopted
in some dynamical-statistical models, little work has been
conducted to seek similarities to historical TCs from the
perspective of their track characteristics (Ren and Xiang,
2017).
Recently, Ren et al. (2018) developed an objective TC

track similarity area index (TSAI) to objectively calculate the
degree of similarity for two TCs, whereby a track-similarity-
based Dynamical-Statistical Ensemble Forecast model for
LTCs precipitation (LTP_DSEF) is established. Together
with Ding et al. (2019), they applied the LTP_DSEFmodel to
rainfall forecast tests of 21 LTCs over South China from
2012 to 2016. Preliminary results demonstrate that the
LTP_DSEF model is superior to three current widely used
operational global NWP models, i.e., the European Centre
for Medium-Range Weather Forecasts (ECMWF) model, the
Global Forecast System (GFS) of the National Centers for
Environmental Prediction, and the global spectral model
(T639) of the China Meteorological Administration (CMA)/
National Meteorological Center. The model proved espe-
cially effective in predicting heavy rainfall accumulations.
To increase the credibility of the LTP_DSEF model and

further improve its forecast performance, more studies need
to be conducted to evaluate its rainfall forecast skills for
more recent LTCs. For this purpose, the “busy” TC season of
2018 is selected in this study. During this season, a total of 10
TCs made landfall over China, a number that exceeds the
climatological annual mean of 7–8 TCs. In particular, the
associated heavy rainfall amounts with large coverage from
the southern to northeastern coastal regions of China provide
a great challenge to test the performance of LTC rainfall
forecasts by the LTP_DSEFmodel. The LTC rainfall forecast
performance is further evaluated by comparing predictions
from the LTP_DSEF model with those from three current
operational global models, i.e., ECMWF, GFS, and the
Global and Regional Assimilation and Prediction System
(GRAPES).
The next section describes the data used in this study and

the main components of the LTP_DSEF model. Section 3
illustrates the test designs by describing the basic variables
included in the LTP_DSEF model, and procedures on how to
obtain optimized values for various parameters and to
achieve the best scheme for predicting heavy rainfall asso-
ciated with the 10 LTCs. Section 4 provides the LTC rainfall
forecast results with the best scheme and compares them
with results from the three operational models. A summary
and concluding remarks are given in the final section.
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2. Data and methodology

Table 1 lists the identifications, names, and peak rainfall
amounts of the 10 LTCs selected for the forecast tests. Their
tracks, from both the best tracks and operational NWP
model-forecast tracks, are obtained from the CMA/National
Information Meteorological Center. The historical best
tracks at 6-h intervals during 1960–2017, which are to be
used to identify analogue tracks, are obtained from the CMA/
Shanghai Typhoon Institute.
Historical observed precipitation data during 1960–2018

are archived at 24-h intervals starting at 12:00 UTC each day
by the CMA/National Meteorological Information Center,
which include 2026 rain gauge stations over most of China,
i.e., with 2003 over mainland China and 23 over Taiwan
Island (the latter are unavailable in 2018, so only the former
are used for the study period). To verify the LTC rainfall
forecasts for the 2018 TC season produced by the
LTP_DSEF model, the corresponding rainfall forecast data
are obtained from the ECMWFmodel, the GFS model by the
US/National Weather Service, and the GRAPES model run
by CMA, with horizontal resolutions of 0.1°×0.1°.
To produce LTC rainfall forecasts, the LTP_DSEF model

includes the following four steps: (1) obtain the forecast
track of the target TC; (2) identify its track similarity to
historical TC tracks; (3) determine the similarities between
other variables influencing LTC precipitation and those of
historical TCs; and (4) make an ensemble prediction of LTC
rainfall. Among these steps, TSAI is used to identify the
extent of similarity between any two TCs, and the Objective
Synoptic Analysis Technique (OSAT, Ren et al., 2001, 2007)
is adopted to identify the historical LTC precipitation ob-
jectively in step (4). More detailed forecast procedures for
testing the 10 LTCs are described in the next section.

3. Forecast procedures and test design

In this study, the LTP_DSEF model consists of seven char-
acteristic parameters. Table 2 provides the values and phy-
sical significances of these parameters as well as their
optimized values for the best scheme. Because each para-
meter has several different values, numerous combinations
are possible; each combination is called a forecast scheme.
The purpose of the rainfall forecast tests is to identify the
optimized parameter values that produce the best scheme for
predicting heavy rainfall from the 10 LTCs with minimum
forecast errors. The procedures to determine the optimized
vales of the parameters are described as follows.
The forecast track of the target TC is first obtained from

the operational TC forecast data according to the initial time
(P1), i.e., the time when the LTC precipitation falls on land,
which can include rainfall from spiral rainbands. Then, this
forecast track is put together with its observed track prior to
the initial time. At this step, the TSAI of the target TC track is
calculated point by point with the tracks of all historical TCs
in the given similarity region (P2), which is determined by
the landfalling location of the target TC or needs of any
forecast. For a given similarity region, a smaller TSAI in-
dicates a greater similarity of the two TC tracks, as de-
termined by the three parameters of TSAI, i.e., P2, P3, and
P4. All historical TCs are ranked in order of their TSAI
values from small to large, and then the seasonal similarity
(P5) is adopted to screen out historical TCs with large dif-
ferences in landfall time from the target TC. As a final step,
the predicted precipitation for the target TC is obtained by
assembling the observed rainfall associated with the re-
maining n top-ranked historical TCs (P6) with one kind of
ensemble forecast scheme (P7). Since the threat score
[TS=hits/(hit+false alarms+misses)) is a common verifica-
tion metric for operational rainfall forecasts, it is employed
to measure the performance of a forecast scheme or dyna-
mical model in predicting TC rainfall with a focus on ac-
cumulated LTC rainfall categories of ≥250 mm and
≥100 mm, respectively.
As shown in Table 2, all possible combinations of the

seven parameters give a total of 54000 forecast schemes for
each TC. However, some TCs cannot be fully valued on
certain parameters, such as the initial time (P1) or the si-
milarity region (P2); therefore, the number of common
schemes suitable for all 10 TCs should be equal to or less
than 54000. For this reason, common schemes are identified
in advance to address a scenario where no result from a
forecast scheme is obtained for a TC. Clearly, the best
forecast scheme should be found from the common schemes,
i.e., whichever has the largest value of TS250+TS100, where
TS250 and TS100 represent the average threat scores for pre-
dicting accumulated rainfall of ≥250 mm and ≥100 mm,
respectively, associated with all 10 LTCs.

Table 1 List of 10 TCs that made landfall over China in 2018 including
their identification (ID) numbers, names, and single-station-observed
maximum total rainfall

ID No. Name Maximum total rainfall (mm)

1804 EWINIAR 441.4

1808 MARIA 184.5

1809 SON-TINH 119.9

1810 AMPIL 263.8

1812 JONGDARI 182.7

1814 YAGI 267

1816 BEBINCA 618.9

1818 RUMBIA 424.1

1822 MANGKHUT 403.7

1823 BARIJAT 116.4
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4. Results

To better understand the results, it is necessary to describe
some basic characteristics of the 10 LTCs used in the present
study. As listed in Table 1, all 10 TCs had single-station
accumulated maximum rainfall of ≥100 mm, but only six of
them produced ≥250 mm, i.e., TC1804, TC1810, TC1814,
TC1816, TC1818, TC1822 (each TC is represented herein by
its identification (ID) number, e.g., TC1804 indicates the 4th
TC occurring in 2018). In addition, Figure 1 indicates the
following three geographical characteristics of the 10 LTCs:
their landfalls occurred over either South China or East
China; LTCs over East China moved northward after land-
fall; and none made landfall over Taiwan Island or across
Taiwan Strait. Thus, the 10 LTCs are sorted into two groups:
LTCs occurring over South China (STC), including TC1804,
TC1809, TC1816, TC1822, and TC1823; and LTCs moving
northward after landfall over East China (NTC), including
TC1808, TC1810, TC1812, TC1814, and TC1818.
Given these described LTC characteristics, it was only

possible to test 3452 common schemes for the 10 LTCs.
Figure 2 shows scatter plots of the threat scores (i.e., TS100-
TS250) associated with all 10 LTCs from the 3452 forecast
schemes for the LTP_DSEF model. Based on the procedures
described in Section 3, the best scheme is determined with
TS250=0.042 and TS100=0.1513, as indicated by a red dot in
Figure 2 with their optimized parameter values given in
Table 2. In the best scheme, the initial time (P1) is at 12 UTC
of the day when LTC precipitation was first recorded by any
continental rain gauge station; the similarity region (P2) is a
rectangle with the diagonal of the TC location at 0 h and 12 h
prior to the initial and maximum lead times, respectively; the
seasonal similarity (P5) spans the months of May to No-

vember; the number of TCs with the top (10) closest track
similarities (P6) is 10; the ensemble prediction scheme (P7)
is the maximum total rainfall; and the other two parameters
(P3 and P4) for TSAI are 0.3 and 0.4, respectively.
To see how well the best scheme of the LTP_DSEF model

predicts the LTC maximum rainfall amounts, Figure 3
compares its two threat scores (i.e., TS250=0.042 and
TS100=0.1513) associated with the 10 LTCs to those produced
by the three dynamical models described in Section 1. The
TS250 and TS100 values obtained for ECMWF, GFS, and
GRAPES are 0.01146, 0.0375, and 0.00789; and 0.12971,
0.17216, and 0.11465, respectively. Evidently, TS250 from the
LTP_DSEF model ranks the first (0.042), slightly above the
second (0.0375), and significantly above the third (0.01146)
and the fourth (0.00789); while TS100 from the LTP_DSEF
model ranks second (0.1513), which is inferior to GFS
(0.17216), but better than the third (0.12971) and fourth
(0.11465).
Figure 4 compares the threat scores associated with in-

dividual LTCs from the best scheme of the LTP_DSEF
model to those from the three dynamical models, together
with their single-station accumulated maximum total rain-
fall. Of significance is that TS values for all forecast models
tend to be higher for LTCs with larger single-station ob-
served maximum total rainfall, excluding the TS100 asso-
ciated with TC1822, indicating likely their better
performance in predicting the intensities of stronger TCs.
Figure 4a shows only six LTCs with a single-station ob-
served maximum total rainfall of≥250 mm because the other
four LTCs produced maximum rainfall amounts < 250 mm.
In predicting the ≥250 mm rainfall, none of the forecast
models gives a larger than null TS for NTC1810 and
NTC1814, which have single-station accumulated maximum

Table 2 Parameters included in the LTP_DSEF model and their optimized values for the best scheme among the heavy rainfall ensemble forecast tests

Parameters (1–7) Tested values Optimized values

Initial time (P1) The time when the LTC precipitation falls on land.
1–2 for 00 UTC or 12 UTC P1=2

Similarity region (P2)

A parameter of TSAI defined as a rectangle with the
diagonal points A and B. A is the TC locations at 0, 12,
24, 36, or 48 h prior to the initial time, and B is the TC
locations at 0, 12, or 24 h prior to the maximum lead
time (i.e., at which time the predicted TC track ends).

1–15

P2=2
(0 h before the initial time and 12h
before the maximum lead time)

Threshold of the segmentation ratio of a latitude
extreme point (P3)

A TSAI parameter: 1–3 for 0.1, 0.2, and 0.3,
respectively P3=3

The overlapping percentage threshold of two TC
tracks (P4)

A TSAI parameter: 1–6 for 0.4, 0.5, 0.6, 0.7, 0.8, and
0.9, respectively P4=1

Seasonal similarity (P5)
1–5 for the whole year, May to Nov, July to Sept, the
same landfall month as the target TC, and within 15
days of the target TC landfall time, respectively

P5=2

Number (N) of TCs with the top N closest track
similarity (P6) 1–10 for 1, 2, …, and 10, respectively P6=10

Ensemble forecast scheme (P7) 1–2 for a mean and a maximum, respectively P7=2

Total number of schemes 2×15×3×6×5×10×2=54000
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rainfall amounts slightly in excess of 250 mm. This could be
attributed to the fact that it is challenging for a forecast model
to capture more localized heavy rainfall regions with
amounts slightly above the high rainfall threshold. Never-
theless, for the remaining LTCs, LTP_DSEF has greater than
null TSs, providing the best estimates for STC1804,
NTC1818 and STC1822, and the second-best estimates for
STC1816, whereas the three dynamical models have greater
than null TSs only for two LTCs (i.e., STC1804 and
STC1816). Moreover, only LTP_DSEF produces greater

than null TS values for NTC1818 and NTC1822. Figure 4
also shows that the GFS-produced TS250 values for all 10
LTCs are slightly lower than those produced from the
LTP_DSEF (Figure 2) because the former model performs
the best for STC1816 but only produces null TS values for all
other LTCs. Similarly, both ECMWF and GRAPES compare
poorly to LTP_DSEF in predicting accumulated rainfall
≥250 mm.
Figure 4b compares the threat scores for accumulated

rainfall ≥100 mm (i.e., TS100) associated with the 10 LTCs
predicted by the best scheme of the LTP_DSEF model to
those by the three dynamical models. For STC1823, none of
the forecast models, including the best scheme, yields a
greater than null TS100 value. LTP_DSEF has greater than
null TS100 values for all remaining LTCs, and it is the only
one that produces greater than null TS100 values for
STC1809, NTC1812, and NTC1814. LTP_DSEF ranks the
best for NTC1818, and second through fourth for STC1822,
STC1804, and STC1816, respectively. The LTP_DSEF-
produced TS100 values for the three LTCs over South China
are slightly smaller than the highest TS100 values produced
from the dynamical models. LTP_DSEF perform poorly only
for NTC1808 and NTC1810; the poor performance for
NTC1808 could be attributed to neglecting data from Taiwan
Island in calculating TSs due to the lack of rain gauge station
data in 2018. Nevertheless, the performance of LTP_DSEF
for both STCs and NTCs is generally better than those of the
dynamical models.
To gain better insight into the forecast performance using

the best scheme of the LTP_DSEF model, horizontal dis-
tributions of the forecast total rainfall amounts of the 10
LTCs produced by all models are plotted and compared with
observations. Data from three representative LTCs, i.e.,
STC1804, STC1816, and NTC1818, are shown in Figures 5–

Figure 2 Scatter plots of the threat scores (TS100-TS250) from the 3452
forecast schemes for the LTP_DSEF model. TS250 and TS100 represent the
average threat scores for predicting accumulated rainfall of ≥250 mm and
≥100 mm, respectively, associated with the 10 LTCs that occurred over
China in 2018. The red dot indicates the best forecast scheme with the
highest values of TS250+TS100.

Figure 3 Threat scores (TS250 and TS100) from the best scheme of the
LTP_DSEF model compared with those from the three dynamical models
(i.e., ECMWF, GFS and GRAPES) associated with the 10 LTCs that oc-
curred over China in 2018.

Figure 1 The best tracks of the 10 LTCs, as indicated by their identifi-
cation numbers (see Table 1), occurring in 2018 over the eastern portion of
China.
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Figure 5 Horizontal distribution of the accumulated total rainfall amounts (mm) associated with TC1804 (EWINIAR) from rain gauge observations (a) and
predictions from the LTP_DSEF (b), ECMWF (c), GFS (d), and GRAPES (e) models. The observed track is also plotted.

Figure 4 Individual threat scores (vertical color bars) for predicting the accumulated rainfall using the LTP_DSEF model compared with those predicted by
the three dynamical models (ECMWF, GFS and GRAPES). Dashed lines denote the single-station observed maximum total rainfall (mm) associated with
each TC. (a) Accumulated rainfall of ≥250 mm associated with six LTCs (STC1804, NTC1810, NTC1814, STC1816, NTC1818, and STC1822; the other
four LTCs are not shown because their single-station accumulated maximum rainfall was <250 mm. (b) Accumulated rainfall of ≥100 mm associated with all
10 LTCs.
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7, respectively, together with their observed tracks.
LTP_DSEF predicts best the ≥250 mm rainfall distribution
for STC1804, but performs slightly worse than GFS and
GRAPES for the ≥100 mm rainfall patterns (cf. Figure 5b–
5e), i.e., with underpredicted rainfall amounts in the north-
eastern quadrant of the storm as compared with observations
(Figure 5a). For STC1816, both the ≥100 mm and ≥250 mm
rainfall patterns predicted using LTP_DSEF (Figure 6b) are
quite reasonable among the forecast models, especially those
along the southern coastal regions, except for the absence of
a ≥250 mm rainfall center. By comparison, LTP_DSEF
captures well the general distribution of ≥250 mm and
≥100 mm rainfall associated with NTC1818, except for
producing too widespread heavy rainfall compared with
observations (Figure 7a–7e). The predicted widespread
rainfall pattern could be attributed to the inclusion of certain
historical LTCs (i.e., herein P6=10) that might have different
larger-scale conditions (e.g., vertical wind shear, static sta-
bility, moisture source) from those of the target LTC. These
different conditions remain to be introduced as variables into

the LTP_DSEF model (i.e., in Table 2). Nevertheless, these
preliminary results indicate that while the LTP_DSEF model
performs unsatisfactorily for some LTCs with high-threshold
rainfall amounts, e.g., the ranked fourth for the ≥100 mm
rainfall threshold of STC1816, its predicted heavy rainfall
distribution still provides valuable information to local
forecasters and hazard mitigation administrators.

5. Summary and concluding remarks

In this study, the LTP_DSEF model consisting of TC track
and landfall time with seven characteristic parameters is used
to predict heavy precipitation with accumulated rainfall
amounts of ≥250 mm and ≥100 mm associated with 10
LTCs that occurred in Southern and Eastern China during the
year of 2018. The best scheme employed in the LTP_DSEF
model is obtained after testing 3452 different forecast
schemes for each LTC. Its performance is then compared to
the predicted rainfall accumulations by three operational

Figure 6 Horizontal distribution of the accumulated total rainfall amounts (mm) associated with TC1816 (BEBINCA) from rain gauge observations (a) and
predictions from the LTP_DSEF (b), ECMWF (c), GFS (d), and GRAPES (e) models. The observed track is also plotted.
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global NWP models (i.e., ECMWF, GFS and GRAPES).
Major results are summarized as follows:
(1) Overall, the LTP_DSEF model has significant ad-

vantages over the three dynamical models in predicting LTC
heavier rainfall, e.g., for the accumulated total rainfall of
≥250 mm for the 10 LTCs. The LTP_DSEF model produces

TS250=0.042 compared to TS250=0.0079–0.0375 values pro-
duced by the three dynamical models. It ranks the second,
with TS100=0.1513, in predicting the accumulated total
rainfall of ≥100 mm for the 10 LTCs. By comparison, the
three dynamical models have TS100 values between 0.1147
and 0.1721.

Figure 7 Horizontal distribution of the accumulated total rainfall amounts (mm) associated with TC1818 (RUMBIA) from rain gauge observations (a) and
predictions from the LTP_DSEF (b), ECMWF (c), GFS (d), and GRAPES (e) models. The observed track is also plotted.
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(2) In general, the LTP_DSEF model is superior or slightly
inferior to the three dynamical models in predicting accu-
mulated total rainfall of ≥250 mm and ≥100 mm associated
with individual LTCs. In particular, the model can predict
heavy rainfall with valuable TSs associated with certain
LTCs, for which the three dynamical models are unable to
provide.
(3) The LTP_DSEF model better captures narrow or lo-

calized distribution of accumulated rainfall of ≥250 mm
occurring in most LTCs and accumulated rainfall of
≥100 mm along the southern coastal region, as compared to
the three dynamical models.
However, the LTP_DSEF model tends to predict too

widespread heavy rainfall compared with observations, more
significantly for certain LTCs moving along the east-coastal
regions of China. In addition, the model is unable to predict
correctly the quadrants in which heavy rainfall occurred in
some LTCs. We attribute all these unsatisfactory aspects to
the inclusion of certain historical LTCs with different en-
vironmental conditions from those associated with the target
LTCs. Some shortcomings with the model forecast perfor-
mance could also be attributed to the few deep-inland his-
torical TCs that have occurred over northern China.
Therefore, tracks of historical TCs should be lengthened
from the location where they downgrade as tropical de-
pressions in future work.
Based on the presented results, we may state that the

LTP_DSEF model can perform better than much more
comprehensive NWP models in predicting heavier accumu-
lated rainfall (i.e., ≥250 mm) for most LTCs studied herein,
despite the only use of TC track and landfall time as the two
basic variables. For some LTCs, the LTP_DSEF model
performs similarly or slightly less satisfactorily than the
NWP models for accumulated rainfall of ≥100 mm. Clearly,
there is considerable room for improving the model forecast
performance, which can be achieved by incorporating more
variables related to TC characteristics (e.g., intensity and
size) and their environments (e.g., vertical wind shear, sub-
tropical high, relative humidity, topography, and etc.), with
extensive validation against historical LTCs. Our future re-
search will focus on these improvements.
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