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ABSTRACT

This paper investigates several fundamental aspects of wave-permeable, or “radiation,” lateral boundary
conditions. Orlanski ( 1976) proposed that approximate wave-permeable boundary conditions could be constructed
by advecting disturbances out of the domain at a phase speed ¢*, which was to be calculated from the values
of the prognostic variable near the boundary. Rigorous justification for this approach is possible for one-di-
mensional shallow-water flow. It is shown, however, that the floating c* approach gives poor results in the one-
dimensional shallow-water problem because all accuracy in the ¢* calculations is eventually destroyed by the
positive feedback between errors in ¢* and (initially small) errors in the prognostic fields at the boundary. Better
results were achieved by using fixed values of c*. In our test cases, an externally specified ¢* could deviate from
the true phase speed U + ¢ by 40%-60% and still yield better results than schemes in which ¢* was calculated
at the boundary.

In order to examine the effects of wave dispersion on the question of whether ¢* should be fixed or calculated,
tests were conducted with a two-level shallow-water model. Once again, the simulations with fixed ¢* were
distinctly superior to those in which c* was calculated at the boundary. A reasonable, though nonoptimal, value
for the fixed ¢* was the phase speed of the fastest wave.

Wave dispersion is, however, not the only factor that makes it difficult to specify wave-permeable boundary
conditions. Two-dimensional shallow-water waves are nondispersive, but their trace velocities along the x and
y axes are functions of wavenumber. As a consequence, the simple radiation boundary condition appropriate
for one-dimensional shaliow-water flow is just an approximation for two-dimensional flow. Engquist and Majda
(1977) developed improved boundary conditions for the two-dimensional problem by constructing approximate
“one-way equations.” In this paper, the approach of Engquist and Majda is used to construct second-order one-
way wave equations for situations with nonzero mean flow. The new boundary condition is tested against several
alternative schemes and found to give the best results. The new boundary condition is particularly recommended
for situations where waves strike the boundary at nonnormal angles of incidence.
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1. Introduction

Numerical simulations of localized atmospheric
phenomena are usually performed over computational
domains that represent only a small and somewhat
arbitrary portion of the total atmosphere. In such cir-
cumstances, the lateral and upper boundaries of the
computational domain do not coincide with true
physical boundaries, and the mathematical and nu-
merical conditions imposed at these boundaries are
intended to mimic the presence of the surrounding
fluid. The boundary conditions should, therefore, allow
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disturbances traveling outward from the interior of the
domain to pass through the boundary without gener-
ating spurious reflections that propagate back toward
the interior. Boundary conditions designed to minimize
spurious backward reflection have been referred to as
open, wave-permeable, or radiation boundary condi-
tions. The terminology “radiation boundary condition”
is due to Sommerfeld (1949, p. 189), who defined the
condition of radiation as “the sources must be sources,
not sinks of energy. The energy which is radiated from
the sources must scatter to infinity; no energy may be
radiated from infinity into . . . the field.”

Previous researchers (e.g., Pearson 1974; Orlanski
1976; Miller and Thorpe 1981; Raymond and Kuo
1984; Hedley and Yau 1988) have expressed the Som-
merfeld radiation condition mathematically as
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ot ox
where ¢ is an arbitrary prognostic variable, ¢* is some
effective phase speed, and (1) is applied at an x bound-
ary. In the case of one-dimensional subcritical linear-
ized shallow-water flow, (1) is a correct statement of
the radiation condition provided that at the right
boundary (x = ), ¢* = U + ¢, or at the left boundary
(x = —o), c* = U — c. Here U is the basic-state flow
velocity and c is the shallow-water phase speed. Equa-
tion (1) is not, however, a correct formulation of the
Sommerfeld radiation condition for more general
physical systems in which the x trace velocity! is a
function of wavelength. If ¢* is a function of wave-
length and two waves of different scale are simulta-
neously present at the boundary, no value of ¢* can
be specified a priori that will allow ( 1) to transmit both
waves without reflection. Nevertheless, (1) has been
widely used as an approximate radiation condition,
and much research has been devoted to the problem
of choosing an optimal c*.

One example, where c* is a function of wavelength,
is gravity-wave propagation in stratified flow. Pearson
(1974) suggested that (1) may be used to radiate in-
ternal gravity waves in stratified flow by fixing ¢* at
the Doppler-shifted phase speed of the dominant ver-
tical mode. As an alternative, Orlanski (1976) suggested
calculating c* at a point just inside the boundary from
the relation

(1)

S0
0¢/dx "

In subsequent studies Miller and Thorpe (1981) pro-
posed a number of higher-order numerical approxi-
mations to (2), and Hedley and Yau (1988 ) suggested
that c* be initially calculated from (2), and then mod-
ified by a number of empirical criteria. One purpose
of this paper is to reexamine the relative merits of spec-
ifying ¢* or attempting to calculate it using some vari-
ant of (2).

Raymond and Kuo (1984) attempted to improve
the representation of the Sommerfeld radiation con-
dition for multidimensional flow by replacing (1) with

9 L0 9% _
a " o - %

where x and y are the horizontal coordinates and c¢¥
and ¢} are empirically determined phase speeds par-
allel to the x and y coordinates. In general, this is still
not an exact formulation of the Sommerfeld radiation
condition, but it is notable in that improvement is not
sought by adjusting ¢* but by refining the differential

(2)

+c¥

(3)

! The x trace velocity is the apparent phase speed at which a wave,
propagating in an arbitrary direction, appears to translate parallel to
the x axis.
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equation applied at the boundary. More sophisticated
techniques for the construction of approximate radia-
tion boundary conditions have been proposed for the
two-dimensional wave equation,

2 2 2
Q—f—cz(g—%a—‘f)%, (4)
ot ox dy

by Engquist and Majda (1977). A second purpose of
this paper is to apply Engquist and Majda’s approach
to two-dimensional shallow-water flow with a mean
wind and to compare the performance of the Engquist
and Majda method with several other schemes.

Most of the previous papers on wave-permeable
boundary conditions have assumed that the best ra-
diation boundary condition was the formulation that
most closely matched a small domain simulation to
that on a larger domain. While this may be a very good
way to tune a boundary condition empirically for a
given application, if the model is nonlinear, it is not
necessarily the best way to assess the fidelity with which
a numerical scheme approximates the true radiation
condition. As formulated by Sommerfeld, the radiation
condition is applied at infinity, and its imposition at
the edge of a finite domain can introduce error since
even perfect wave-permeable boundary conditions may
be incapable of correctly mimicking the presence of
the surrounding fluid. After a disturbance propagates
through a truly wave-permeable boundary, the nu-
merical solution loses all memory of the disturbance.
Yet some outward-propagating finite-amplitude dis-
turbances are capable of generating signals that travel
back toward the center of the computational domain,
and when these disturbances exit through the boundary
of the computational domain, their subsequent influ-
ence on the numerical solution is lost. In such circum-
stances, the differences that may arise between small-
and large-domain simulations cannot be attributed
solely to defects in the numerical formulation of the
radiation boundary condition.

An example of the inadequacy of the radiation
boundary condition is provided by a series of nonlinear
mountain-wave simulations in Durran and Klemp
(1983, Fig. 6). A very deep sponge layer was employed
at the top boundary (the depth of the sponge was 1.5
vertical wavelengths and at least one half the total depth
of the numerical domain). The sponge worked well
for small-amplitude flow, but when finite-amplitude
waves were present at the top boundary, the solutions
became sensitive to the location of the upper boundary.
This sensitivity increased dramatically with increasing
wave amplitude. The deep-domain simulations ap-
peared to differ from those in shallow domains because
downward-propagating waves were generated by wave-
wave interactions in the upper part of the deep domain,
and the subsequent influence of these nonlinearly gen-
erated waves was captured in the deep-domain solution
but lost in the shallow-domain simulations. Deep con-
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vective cloud simulations provide another example
where the documented sensitivity of the simulations
to the specification of the lateral boundary condition
(Clark 1979; Hedley and Yau 1988), or to the location
of the lateral boundary (Fovell and Ogura 1988), may
be less the consequence of poorly approximating the
radiation boundary condition than the result of inad-
equately capturing important feedbacks on the con-
vection arising through the nonlinear processes outside
the numerical domain. If one tunes c* (or some al-
gorithm for the computation of ¢*) to minimize the
difference between convective cloud simulations per-
formed using large and small domains, the result may
not be the c* that minimizes spurious reflection but
rather the ¢* producing a reflection most closely sim-
ulating the inward-propagating influence that may de-
velop as the convective circulation interacts with the
surrounding fluid.

Errors generated by a failure to incorporate inward-
propagating signals generated by real physical processes
outside the boundaries of the computational domain
cannot be reduced without using nested grids or en-
larging the domain. Such errors are not the primary
concern of this paper, which concentrates on improving
the permeability of the lateral boundaries to outgoing
waves. In order to ensure that all signal propagation
should properly be directed outward through the
boundaries, this investigation will focus on linear wave
propagation problems. The question of whether it is
best to specify ¢* or to compute it from (2) is examined
in the context of one-dimensional shallow-water flow
in section 2. The influence of wave dispersion on this
question is investigated using a two-layer shallow-water
model in section 3.

Wave dispersion is not the only factor that makes it
impossible to specify a perfect value for c¢* in meteo-
rological models of three-dimensional continuously
stratified flow. As discussed at the beginning of this
introduction, (1) is generally not an exact radiation
condition for problems with more than one spatial di-
mension. Techniques for improving the formulation
of radiation boundary conditions in multidimensional
flows are examined in the context of the two-dimen-
sional shallow-water system in sections 4 and 5. The
second-order Engquist and Majda boundary condition
is extended to two-dimensional shallow-water problems
with nonzero mean flow in section 4 and tested against
several competing schemes in section 5. Section 6 con-
tains the conclusions.

2. One-dimensional shallow-water flow

How well do Orlanski-type calculations estimate c*?
It is difficult to assess the accuracy of such calculations
in stratified flows because the correct ¢* [i.e., the value
for which (1) becomes a true radiation condition] is
usually an unknown function of space and time. In
linearized one-dimensional shallow-water flow, how-
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ever, the correct ¢* is known. If U denotes the speed
of the mean flow and ¢? = gH, c* is just U % ¢, the
Doppler-shifted phase speed of shallow-water gravity
waves. As the first step of an investigation into the abil-
ity of approximate formulas to estimate an appropriate
c*, let us examine how such formulas perform as
boundary conditions for a linearized shallow-water
model. The finite-difference equations for this simple
model are

ulil, — ultin + yf ez Ui-1/2
2At 2Ax
n—1 n—1
Ni+1 — N
+——=0, (5
A (5)
it — ! P Rl 1
2A¢ 2Ax
ultl, —ut!
+ C2( 1+1/2Ax i 1/2) - 0 (6)

Here u is the perturbation horizontal velocity, 7 is g
times the displacement of the free surface from its
equilibrium level, and the notation u] indicates the
numerical approximation to u at the point x = iAx,
t = nAt. The velocity and height variables are spatially
staggered such that the edge of the domain coincides
with the outermost velocity points. According to (5)
and (6), all spatial differences are centered, the time
discretization of the advection terms is leapfrog, and
the pressure-gradient and divergence terms are inte-
grated with forward-backward differencing (Mesinger
and Arakawa 1976). The overall scheme is nondamp-
ing and stable when

A kA
a |U| sinkAx + 2c¢ sin xox <1
Ax 2

T
k<s—.
Ax
A sufficient (though somewhat loose) condition for

stability is, therefore, (| U] + 2¢)At/Ax < 1. At the
initial time the velocity is zero and

for all

n(x, 0) = g sin*(wx). (7)

The solution is computed on the domain 0 < x < 4
km, with Ax =80 m, At = 048s,¢c=40ms™, U
= 10 m s, and radiation boundaries at x = 0 and x
= 4 km.

Three numerical approximations to the free-surface
displacement at ¢ = 72 s are displayed in Fig. 1. The
solid curve shows a numerical solution computed using
periodic boundary conditions on the larger domain —8§
< x < 12 km. The large-domain solution may be con-
sidered free from boundary-condition errors, since the
periodic domain is too large to allow any disturbance
exiting the region 0 < x < 4 km to reenter that region
before ¢t = 320 s. The long-dashed curve in Fig. 1 shows
the result obtained using (1) with ¢* = U % ¢ at the
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F1G. 1. Numerical solutions for the height field computed using
periodic boundary conditions on a very large domain (solid line),
and radiation boundary conditions with ¢* = U+ Vg_H(long-dashed
line) and ¢* computed from the Orlanski condition (8) (short-dashed

line).

appropriate inflow and outflow boundaries. This
boundary condition is applied to each field using up-
stream differencing to step between time levels ¢ — At
and ¢ + At. The short-dashed curve shows the solution
obtained by calculating ¢* using Miller and Thorpe’s
(1981) formula

Ax (h-1 — ¢Z:11)
* - _ T 8
At (qsz:{ - ¢33/’ (8)

where ¢ represents either u or 7, b is the index of the
grid point at the right boundary, and the final value of
c* is constrained to lie in the interval 0 < ¢* < 0.95Ax/
2At. (The preceding applies at the x = 4-km boundary;
a similar expression is evaluated at x = 0.) This par-
ticular approximation to (2) was found to give better
results than the original formula proposed by Orlanski
(1976) or the higher-order variants suggested by Miller
and Thorpe (1981). As one might expect, the solution
obtained by specifying ¢* = U % c is superior to that
obtained using the numerical calculation (8).2 It is,

however, somewhat surprising that the solution ob-

tained by calculating c* is so poor.

Suppose the gravity-wave phase speed is approxi-
mated by some constant value ¢, and c¢* is set to U

2The ¢* = U * ¢ solution does not perfectly match the large-
domain periodic solution because of the one-sided differencing at

the boundaries.
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+ ¢, (or U — ¢,) at the right (left) boundary. Even
when ¢, is a crude approximation to ¢, this approach
can produce better results than those obtained by con-
tinually estimating c* from (8). This superiority is il-
lustrated in Fig. 2, in which the cumulative root-mean-
square (rms) boundary-induced error is plotted as a
function of ¢, and compared with the error that de-
velops when c* is calculated using (8). The cumulative
mean-square boundary-induced error in the solution
is calculated as

N
2 ou(n) + a,(n), (9)

n=1

1
E = —
' TN,
where N, is the total number of time steps and o, and
o, are measures of the boundary-induced error in u
and 7. The boundary-induced error in a field ¢ at time
n is computed according to the formula

Ny .
Z (o7 — ¢1)?
o3 (n) = = (10)

DRCHE

Here N, is the number of spatial grid points and ¢ is
the numerical solution computed using the large pe-
riodic domain. According to Fig. 2, the optimal choice
of ¢; = ¢ = 40 m s~! gives substantially less error than
that generated by calculating c¢* at the boundary.
Moreover, fixed values of ¢, are superior for 25 < ¢,
< 65 m s, or equivalently for 0.62¢ < ¢, < 1.62c.
Consistent with the theoretical analysis of Klemp and

Eq Error

70
Fixed cg (ms1)

50

F1G. 2. Cumulative rms boundary-induced error after 200 time
steps (E, ) generated by the misspecification of ¢* as U * ¢,, plotted
as a function of ¢, (solid curve). Also shown is the error for two
variants of the Orlanski scheme that, being independent of ¢,, appears
as horizontal lines. The result using Orlanski’s original formula for
¢* is shown as the short-dashed line; the long-dashed line is obtained

by computing ¢* from (8).
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FI1G. 3. Plot of c* as a function of time step as calculated from the
Orlanski scheme (8) using (a) the solution on the limited-domain
and (b) the wide-domain periodic solution.

Lilly (1978), the asymmetry of the error about ¢*
= ¢ suggests that it is better to overestimate ¢, than to
underestimate it.

It is instructive to directly examine the c¢* values
calculated at the boundaries using the Orlanski-type
approach. The right-hand boundary c¢* computed
from (8), is plotted as a function of the time step in
Fig. 3a. At the initial time, a wave trough is present at
the boundary; every 20 time steps thereafter another
trough or crest arrives at the boundary. During the
interval between the passage of the initial trough and
the first crest (the first 20 steps), the ¢* calculation
yields a somewhat reasonable approximation to the
correct value of 50 m s™'. During the interval between
the passage of the first crest and the second trough (the
second 20 steps ), the computed c* is quite noisy. After
the first 40 steps, ¢* is wildly over or underpredicted
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and repeatedly set to its limiting values of 0 or 80 m s™*

in an almost 2A¢ oscillation. The most serious problem
with the ¢* calculation is not the fidelity with which
the finite-difference approximation (8) approximates
the continuous expression (2) but the susceptibility of
the calculation to a positive feedback between the gen-
eration of error at the lateral boundary and further
degradations in c¢*. The effect of boundary-induced er-
ror on c* may be appreciated by comparing Fig. 3a
with Fig. 3b. Figure 3b shows the right-hand boundary
c* obtained when the large-domain periodic solution
is substituted in (8). The results in Fig. 3b are much
improved.> When c* is diagnosed from the large-do-
main solution, there is no long-term trend in the error.
The largest errors are associated with the passage of
troughs or crests, in which case the denominator in
(2) becomes small and the c* calculation becomes very
sensitive to numerical error.

The positive feedback between errors in ¢* and errors
in u and 7 is not surprising. The full equations support
waves moving at both U + ¢ and U — ¢ and are not
equivalent to (1). Thus, a computation such as (2)
will not diagnose a meaningful phase speed unless one
of these two admissable waves is absent. Very early in
the simulation there are no inward-propagating waves
at the lateral boundary and a reasonable calculation of
c* is possible (compare the first 20 steps in Figs. 3a
and 3b). As the simulation proceeds, the errors that
develop at the lateral boundary appear as inward-
propagating waves, and these erroneously generated
waves grow until (1) is no longer applicable. When the
inward-propagating waves reach sufficient amplitude,
the local calculation of the phase speed becomes es-
sentially meaningless.

3. Two-layer shallow-water flow

The preceding examples demonstrate the difficulty
of implementing Orlanski-style boundary conditions
in the one-dimensional shallow-water system. These
results are discouraging since the one-dimensional
shallow-water system is one of the few situations where
there is a true wave speed that might be calculable from
(2). On the other hand, the one-dimensional shallow-
water system is also one of the few systems in which
there is no need for the Orlanski approach, because it
is easy to specify c¢*. In systems that support waves
moving at different speeds, it is not possible to specify
a unique c*, and it may be more effective to calculate
some (presumably averaged) ¢* via (2) than to fix ¢,
at a constant value. This possibility may be examined
by considering the case of linearized two-layer shallow-
water flow parallel to the x axis, which is governed by
the following system of equations (Gill 1982, p. 119):

3 There are 12 grid points per wavelength in the dominant distur-
bance in this test case. Higher resolution further improves the ¢*
calculation shown in Fig. 3b.
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68_1,;1 gi—}:=0, (11)
aa—‘jz %?9_};+ "Z—’j:=o, (12)
aa—’;‘+H,‘lx Hz‘?;‘f:o, (13)

where g’ = g(p> — p1)/p2, and u, p, h, and H denote
the perturbation horizontal velocity, the density, the
elevation of the top of each layer, and the mean depth
of each layer. The subscripts | and 2 indicate quantities
in the upper and lower layer, respectively. This system
supports two different modes (one external and one
internal wave) that move at speeds

H 1/2
c=¢(—lg_‘#) : (15)
where p is one of the two roots of
H, + gH, — 2¢g'H. 'H, — gH
2+gz 811, gzu-l-g 1 g2=0.(16)

g'H, g'H,

Numerical solutions were computed for two-layer
flow using forward-backward differencing and spatial
and temporal discretizations similar to those in the one-
layer case. Three cases were considered; in all three
H,/H, = 1.Incase A, g’ = 0.85g and the phase speeds
of the two waves, 82.4 and 54.8 m s/, are close to-
gether. In case B, g’ = 0.2¢g and the phase speeds, 96.3
and 22.7 m s™!, are more widely separated. Case C is
an intermediate situation for which g’ = 0.5g and the
phase speeds are 91.4 and 37.9 m s™. In all cases, the
horizontal structure of the initial disturbance is de-
scribed by (7) and the vertical structure is chosen to
equally partition the total perturbation energy between
the two modes. The cumulative boundary-induced er-
ror in the two-layer system is computed as

| N2

E, =
4N’nlkl

(17)

Uuk(n) + Jhk(n)s

where, as before, o4(n) is computed from (10).
Figure 4 shows the cumulative boundary-induced
error in simulations of cases A and B with ¢* fixed at
¢, or with ¢* calculated using the Orlanski-type formula
(8). Not surprisingly, the fixed ¢, method and the Or-
lanski-type procedure both work best in case A, the
case with the least difference in the speed of the fastest
and the slowest mode. Of more significance is the fact
that, for a wide range of ¢,, the fixed ¢* scheme is
superior to the scheme in which ¢* is computed at the
boundary using (8). Indeed, the range of ¢, over which
the fixed-c* approach is superior is larger than in the
one-layer case (compare with Fig. 2). According to
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F1G. 4. Cumulative boundary-induced error after 500 time steps
(E,) as a function of ¢, for cases A (two modes moving at somewhat
similar speeds, solid line) and B (modes moving at very different
speeds, dashed line). Also shown are the results from the Orlanski
method (8), for which case A is the solid straight line and case B is
the dashed straight line.

Fig. 4, in case A, the optimal value of ¢, is approxi-
mately the average of the speeds of the fast and slow
modes. In case B, however, the optimal ¢, is closer to
the speed of the fast mode. In both cases, good results
could have been obtained by fixing ¢, at the phase speed
of the fast mode. Although the current problem is con-
siderably less complex, these results support the idea
that, in simulations of continuously stratified flow, a
good choice for a fixed value of c* is the phase speed
of the most rapidly moving internal gravity wave NH/
7 (Klemp and Wilhelmson 1978). Here N is the
Brunt-Viisild frequency, H is the depth of the model
domain, and the longest vertical wavelength excited to
significant amplitude is assumed to be 2H.

One strategy for improving the calculation of ¢* is
to temporally or spatially smooth the result of (8)
(Durran and Klemp 1983). Figure 5 (solid line ) shows
the result of smoothing the rapid time variations in the
c* calculation with a running time filter

c¥(n)=ac¥(n— 1)+ (1 —a)c¥(n), (18)

where c¥ (n) represents the time-smoothed phase speed
at time step #. The results shown in Fig. 5 are for case
C, in which the difference in wave speeds is interme-
diate between those in cases A and B. The initial value
of ¢* was set to 70 m s™!, which is a nearly optimal
value of ¢, for use with the fixed-c* approach. As in-
dicated in Fig. 5, the best results are obtained for «
= 1, which corresponds to fixing ¢* at its initial value
of 70 m s~!. The E, error is significantly larger for 0
< o <0.9. Figure 5 also shows the effects of both tem-
porally and spatially smoothing the c* calculation
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FIG. 5. Cumulative boundary-induced error after 500 time steps
(E,) as a function of the running-time smoothing coefficient « with
(dashed line) and without (solid line) vertical averaging of ¢*.

(dashed line). Spatial smoothing was performed by
averaging the ¢* computed for u, and u, together. Spa-
tial smoothing slightly reduced the error when o was
small, and increased it when « was large. The best re-
sults were, nevertheless, obtained for a = 1 or, equiv-
alently, for fixed c*.

Some idea of the spatial distribution of the error in
a representative two-layer solution is provided by Fig.
6, which shows the large-domain periodic solution, an
Orlanski-type solution (with & = 0.2 and no spatial
averaging of ¢*), and a solution with ¢* fixed at c,
= 70 m s~!. Numerical solutions are plotted for both
the free surface (/;, upper curves) and the internal
interface (#,, lower curves). Figure 6 shows both the
limited domain (the unshaded region 0 < x < 4 km)
and the left-hand portion of the outer periodic domain
(the shaded region —8 < x < 0 km). The portion of
the outer periodic domain is shown to illustrate the
nature of this wave-propagation problem. The four
peaks that comprise the faster-moving, external mode
(interface displacements smaller than and in phase with
the free surface) have almost separated from the four
peaks of the slower-moving, internal mode (interface
displacements greater than and 180° out of phase with
the free surface). The last crest of the internal mode is
Just reaching the boundary. As evident from the so-
lutions within the shaded region of Fig. 6, large errors
are generated in the Orlanski-type solution. The con-
stant-c* solution performs significantly better, although
it still introduces serious error in A,.

4. An application of the Engquist and Majda method

In atmospheric applications it is common to assume
that the difficulties associated with the specification of
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¢* arise from our interest in dispersive waves. In fact,
(1) does not adequately describe the radiation of non-
dispersive waves in multidimensional systems. A sim-
ple example of the problem, and one promising tech-
nique for the construction of more accurate wave-per-
meable boundary conditions, may be illustrated by
examining two-dimensional shallow-water flow.

In the case of zero mean flow, the linearized shallow-
water equations reduce to (4). For wave solutions of
the form

&(x, y, 1) = go explilkx + Iy — wt)]  (19)

(here k and / may be positive or negative, but w > 0
to avoid redundancy), the shallow-water dispersion
relation becomes

w? =c2(k*+ 1?), (20)
or equivalently
) 6212 1/2
k=x—{1—-——] . 21
c ( w? ) (21)
The group velocity parallel to the x axis is
dw
=— = ke(k?* + [*)71/2, 22
Ce, 9% c( ) (22)

No plus or minus sign appears in (22 ) because the sign
of the group velocity is determined by the sign of k.

>

(=}

Free Surface Displacement

Interface Displacement
(e}

-8 4 0 4

X (km)

FIG. 6. Free-surface (upper curves) and interface displacements
(lower curves) for three solutions to the two-layer problem. Periodic
large-domain solution (solid line), limited-domain solutions with
constant ¢* (long-dashed line), and ¢* computed from Orlanski’s
formula (8) (short-dashed line). Both the limited domain (0 < x
< 4 km) and the left half of the extended periodic domain (shaded
region —8 < x < 0 km) are shown. The Orlanski and constant ¢*
solutions are computed only within the limited domain.
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Spurious reflection at the right-hand boundary can be
eliminated by requiring that all waves at the boundary
propagate energy in the positive x direction, or equiv-
alently, that their dispersion relation is given by the
positive root of (21). Thus, the x trace velocity for
rightward-moving waves is

) | c2 lZ —-1/2
Yool - == ,
k w?

and if the one-dimensional radiation condition (1) is

used to transmit two-dimensional shallow-water waves,
¢* must be

(23)

212\—1/2

¢l

c*=c(1——i—) ,
w

(24)

which is a function of both the frequency and the
wavenumber parallel to the boundary.

One could attempt to estimate ¢* locally using the
basic Orlanski formula (2). As shown in section 2, this
approach does not work particularly well in one spatial
dimension, and it does even worse in two-dimensional
flow. Raymond and Kuo (1984) attempted to improve
the performance of the Orlanski scheme in two-di-
mensional problems by generalizing the radiation con-
dition to (3) and calculating the x- and y-component
phase speeds as

2 21-1
o 3830[(90\ (a6\)
at dx [\ dx ay

2 27-1
sl &) e
dat oy [\ ax dy
These formulas reduce to the standard Orlanski scheme
if the gradient in ¢ parallel to the boundary is zero.
Engquist and Majda (1977) proposed an alternative
approach, based on the concept of one-way wave
equations. Under the assumption that ¢%/?/w? was
small, they constructed a series of progressively more
accurate approximations to the positive root of (21).
Each approximate dispersion relation was associated
with a partial differential equation that could be inte-
grated using finite differences computable at the
boundary. The lowest-order approximation completely
neglects the c?/?/w? term in the square root in (21).
This is formally correct only when the wave fronts are
perpendicular to the boundary, that is, when the flow
is one-dimensional. The resulting dispersion relation
(w = ck) is associated with the differential equation

36 96
— + —
ar " Cox

which is identical to the radiation condition for one-
dimensional flow. Engquist and Majda’s higher-order
approximations remain accurate for larger values of
cA?/w? = 1?/(k? + [?), that is, for waves that strike
the boundary at progressively more acute angles. Their
second-order approximation is

=0, (26)
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(27)

w? 202’

which yields a dispersion relation for rightward-moving
waves,

272\1/2 272
(l_i) o1t

2]2
wz—ckw—cT=0, (28)
that is associated with the partial differential equation
3% % c*d%
-— — ———=0. 29
a? " “aax 2 9 (29)

Trefethen and Halpern (1986) have recently proved
that (29) is a well-posed boundary condition for the
shallow-water equations. The one-way wave equations
of Engquist and Majda have been used as boundary
conditions in the numerical simulation of acoustic
(Halpern and Trefethen 1988) and electromagnetic
(Blaschak and Kriegsmann 1988) waves and have been
used to evaluate the time dependence in a radiation
upper boundary condition for large-scale atmospheric
waves (Rasch 1986), but these equations do not seem
to have been employed to simulate systems with sig-
nificant mean flow through the boundary. Engquist
and Majda (1977) did consider the shallow-water
problem with nonzero mean flow in their original pa-
per, but their formulation relied on a transformation
of the dependent variables that has not been widely
implemented in practical problems. In the following,
we pursue a different approach in which approximate
one-way wave equations are constructed for direct ap-
plication to the standard form of the shallow-water
equations.

Consider, therefore, a situation in which there is a
mean flow U parallel to the x axis. (Formulas for the
general case of mean flow along both the x and y co-
ordinates are presented in the Appendix.) The shallow-
water dispersion relation becomes

(w = Uk)? = c*(k* + 1?). (30)
Solving for k yields
U=+ c[l + (I?/o®)(U? = c*)]'/?
k=w[ [ (U/Zav_);2 )] ] (31)

Approximating the square root in the same manner as
(27), one obtains the one-way dispersion relations

w _c
Ut 20 (32)
or equivalently, the partial differential equations
R % _ c 3¢
—S +tUxo)|—=Fz-=]|=0.
az T C)<6t6x "2 6y2) 0. (3

In both (32) and (33) the top set of signs should be
used at the right x boundary, and the bottom set at the
left boundary. Boundary conditions at the y boundaries
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are obtained by solving (30) for / and making the ap-
proximation

Czkz 1/2 CZkZ
D E—— ~|l—-————, (34
[1 (w— Uk)2:| 2(w — Uk)? (34)
which leads to the one-way dispersion relations
w— Uk ck?
=+ - . 5
! [ c 2(w ~ Uk)] (35)

and the partial differential equations

9 a\[o 8 8\, c*d%
S R | iy R PR )
(at+U6x)(at Vax Cay)¢ 2 ax?

(36)

In (35) and (36), the plus sign should be used at the
north y boundary, and the negative sign at the south
boundary.

Both (33) and (36) are truly one-way wave equations
since, with the appropriate choice of sign, all wave so-
lutions to these equations have group velocities directed
outward through the boundaries. In the case of (33)
this is both fortunate and somewhat surprising since
the unapproximated equations do not possess this
property unless U = 0. The x component of the group
velocity of a true shallow-water wave is

ow U+ ck

ok Tk + By
Even when the flow is subcritical (¢ > | U|), the choice
of the positive sign in (37) will not ensure that all waves
- transport energy in the positive x direction. When U
< 0 and k is sufficiently less than / (i.e., when wave
propagation is sufficiently parallel to the y axis), the
group velocity is negative, independent of the choice
of sign. In contrast, the dispersion relation (32) is as-
sociated with x-component group velocities

dw  w(U=xc)

(37)

ok 20— (Uxc)k’ (38)
or substituting for k from (32)

0 U=+

w @ (U=xc) (39)

ok WPxcP(Uxce))2’

If the flow is subcritical, the denominator is always
positive and the sign of the group velocity is determined
by the choice of sign in the numerator. Thus, if the
positive signs are chosen, (33) will require that all waves
present at the right x boundary propagate energy out-
ward through the boundary. The y-component group
velocities associated with (35) and (36) may be written

dw c(w — Uk)?

— =+ ,

al (w — Uk)? + c*k?)2
the direction of which is always outward, as determined
by the choice of sign in (35). Although no formal proof

(40)
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of the well posedness of (33) and (36 ) will be provided
in this paper, Trefethen’s (1983) group velocity inter-
pretation of the Gustafsson—Kreiss-Sundstrom stability
theorem (Gustafsson 1972) suggests that since these
conditions require outward-directed group velocities
at the boundary there is a reasonable likelihood that
they are well posed.

5. Test results for two-dimensional
shallow-water flow

In the remainder of this section, the Engquist and
Majda scheme will be compared with the Raymond
and Kuo scheme and with several other alternative
formulations for wave-permeable boundary conditions.
In each instance, the finite-difference equations used
in the interior of the domain are the two-dimensional
generalization of (5) and (6),

Ottliryn; + Ubpttlvyjny + 8xnisifn; = 0, (41)
0207 jr1j2 + Ubo¥f jrijo + 875412 =0,  (42)
Oami;+ Ubyen?; + Cz(ﬁxu,'-'j-l + 5yv;’j‘) =0, (43)

where the finite-difference operator § acting on an ar-
bitrary function r is defined as

r(x; + nAx/2) — r(x; — nAx/2)
nAx )

Onxr(X:) = (44)
The finite-difference approximations for the Raymond
and Kuo boundary conditions, (3) and (25), are spec-
ified following Eqgs. (9)and (11) of Raymond and Kuo
(1984).

In the second-order Engquist and Majda scheme,
the one-way wave equation at the right-hand x bound-
ary [(33) with the plus signs] is discretized as

8idh-1n; +(U+ €)02,0xP3-1/2,;

‘ sTgn
_§(U+C)5y¢b—l/2,1 =0, (45)

where b is the i index at the boundary, and an averaging
operator is defined such that

e r(x;+nAx/2) + r(x; — nAx/2)
2

r(x;) (46)

and

.
r(xi,yj)"*’"y=[r<xi,yi>""] . (47)

At the “upper” y boundary (36) becomes
P e 5, Y
87 dTo172 + 2Ubx 02 p-1/2 + CO20,07 512

2_ 22/0\52qn Y W
+(U” = c*/2)0507p-1/2  + Ucboxbypip—1,2 = 0.
(48)

The interior solution is updated first; then (45) and
(48) are solved at the boundary. The implicit coupling
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in these equations requires the solution of a tridiagonal
system at each boundary. These boundary conditions
are applied separately to u, v, and ». The Engquist and
Majda scheme requires special formulas near the corner
points. The actual corner points are not used in the
integration; they are filled in by interpolation for cos-
metic purposes. The boundary points directly adjacent
to a true corner were computed using the first-order
one-way wave equation (26), with ¢ replaced by the
appropriate Doppler-shifted value, U * ¢, at the x
boundaries. The first-order formula avoids the difficulty
of computing second derivatives parallel to the bound-
ary in the vicinity of the corners.

Four other wave-permeable boundary conditions
were also considered: the first-order Engquist and
Majda scheme, the Rayleigh damping sponge layer of
Davies (1983), and two mixed approaches that will be
referred to as the “zero-gradient” and ““fixed-inflow”
schemes. The boundary conditions imposed in each
test case are listed in Table 1. In the first-order Engquist
and Majda method (EM1), the appropriately Doppler-
shifted variant of (26) is imposed for all variables at
all boundaries using upstream differencing. In the zero-
gradient scheme (ZG), the Doppler-shifted version of
(26) is applied only to the normal velocity. The
boundary values of the height field and the tangential
velocity, which are specified at locations one-half grid
interval inside the actual edge of the computational
domain due to the grid staggering, are computed from
the full governing equations—except that the advection
perpendicular to the boundary is evaluated using one-
sided differences at outflow and set to zero at inflow.
The fixed-inflow scheme (FI) is identical to the zero-
gradient scheme except that the height field and tan-
gential velocity are fixed at inflow. (Note that since it
1s computed using the first-order Enquist and Majda
method, the normal velocity is not fixed at inflow by
the FI scheme.) Both the FI and the ZG schemes are
the shallow-water analogs to procedures currently used
in many mesoscale atmospheric models.

The sixth and final approach is the tendency mod-
ification scheme of Davies (1983), in which an eight-
point Rayleigh damping sponge layer is appended to
each edge of the domain (DSP). Within the sponge,
an intermediate result ¢7*! was first computed using
the full equations. The final result ¢?*! was then cal-
culated as

P =gl — (o7 — du). (49)
Here ¢, is the fixed boundary value, i is the coordinate
index in the direction normal to the boundary, and v;
assumes the values 0.02, 0.1, 0.25, 0.5, 0.75, 0.9, 0.98,

and 1.0 as i approaches the outside edge of the sponge
layer.*

* The values of +y; given above are for the tangential velocity and
the height fields. The +; for the normal velocity were interpolated
between these values to account for the mesh staggering.
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TABLE 1. Summary of the boundary conditions employed in the
two-dimensional shallow-water simulations.

EM1 First-order Engquist and Majda scheme applied to all
fields.

EM2 Second-order Engquist and Majda scheme applied to all
fields.

FI First-order Engquist and Majda scheme applied to
normal velocities. Height and tangential velocities fixed
at inflow. Height and tangential velocities computed
using upstream differencing at outflow.

7G As in FI except that the gradient in the height and
tangential velocities is zero at inflow.

RK Raymond and Kuo scheme applied to all fields.

DSP Eight-point Rayleigh damping sponge applied to all fields.

In the following simulations, three of the preceding
methods, the Raymond and Kuo, the second-order
Engquist and Majda, and the sponge-layer, gradually
generate short-wavelength noise near the boundary.
The finite-difference scheme used in these tests is com-
pletely nondissipative, so it permits the noise to ac-
cumulate until (particularly in the Raymond and Kuo
method) it reaches unacceptable levels. Thus, when
integrating with the Raymond and Kuo, the second-
order Engquist and Majda, and the sponge-layer
boundary conditions, a second-order smoother of the
form

p= or + ali(83 975 + 85975, (50)
where J) denotes a spatially unsmoothed variable, was
employed in a four-gridpoint-wide strip adjacent to each
boundary. The computations at the other interior
points were not smoothed. The smoothing coefficient
was a/Ax? = 0.016.

These methods are compared in a series of simula-
tions of shallow-water flow over topography. The to-
pography is an isolated circular mountain of the form

xZ + y2 -3/2
st - w2 1)

where a = 5 km and 4 is 10% of the total fluid depth,
which is chosen such that ¢ = VgH = 40 m s™". The
mean flow is 10 m s™! parallel to the x axis. The U
and ¢ employed in the Engquist and Majda boundary
conditions were, therefore, 10 and 40 m s}, The hor-
izontal resolution is 1 km along both coordinate axes;
the time step is 5.657 s. The initial conditions for each
simulation are n = ¥ = v = 0, and these values define
the fixed-height and tangential-velocity fields at the in-
flow boundaries in the FI simulation. The computa-
tional domain consisted of the rectangular region —20
km < x < 20 km, —40 km < y < 40 km. The wide
domain in the direction parallel to the y axis allows a
clear examination of the transients generated by the
impulsive start as they propagate through the lateral
boundary at a nonnormal angle of incidence.

As the flow adjusts to the presence of the mountain,
a semicircular wave of elevation propagates upstream;
a semicircular wave of depression propagates down-

(51)
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F1G. 7. Height contours of the free surface at ct/a = 7.25 after the impulsive start. Only the
lower half of the domain is shown; the solution is symmetric about the top boundary. The region
where the topography is higher than /,/2 is shaded. Dashed contours are the large-domain solution;
solid contours are solutions generated using the following boundary conditions: first-order Engquist
and Majda (EM1); second-order Engquist and Majda (EM2); first-order Engquist and Majda
for the normal velocities and the other fields fixed at inflow and upstream differenced at outflow
(F1); as in FI with a zero gradient specified for the nonnormal velocity and the height field at
inflow (ZG); Raymond and Kuo (RK); and an eight-gridpoint Davies sponge layer (DSP).

stream, and a wave of depression remains above the is compared with a control simulation computed on a
mountain. The height field at ct/a = 7.25 is contoured much larger (400 km X 400 km) mesh (dashed lines).
for all six solutions in Fig. 7 (solid lines). Each solution  Only the bottom half of the domain is shown in Fig.
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7. The u and 7 fields are symmetric about the top edge
of the domain; v is antisymmetric. The shaded half-
circle at the top of each panel indicates the region where
the mountain height is greater than /,/2. The transient
wave of elevation appears as the prominent arc in the
lower left of each panel. The Raymond and Kuo and
second-order Engquist and Majda schemes both pass
this wave through the boundary with a minimum of
distortion. The first-order Engquist and Majda and the
sponge-layer schemes produce substantially more error,
but even these schemes look good compared to the ZG
and FI methods. The ZG method amplifies the out-
going wave and produces a spurious region of depressed
heights directly upstream of the mountain. The worst
results are, however, obtained using the FI method that
generates a very strong reflected wave.

The downstream-propagating wave of depression,
which has almost left the domain by the time shown
in Fig. 7, is visible as the small region of —1 heights in
the lower-right corner of the domain. Data from earlier
times in the simulation (not shown) indicate that the
Raymond and Kuo, second-order Engquist and Majda,
ZG and FI schemes all do a superior job of modeling
the downstream-propagating wave. The first-order
Engquist and Majda and the sponge-layer methods
generate significantly larger errors during the passage
of the downstream-propagating wave. The dramatic
difference between the treatment of the upstream- and
downstream-propagating waves by the ZG and FI
methods arises because these methods closely approx-
imate the governing equations with one-sided differ-
encing at outflow boundaries but use crude assump-
tions about v and % at inflow.

Although it is certainly important for wave-perme-
able boundary conditions to pass transient disturbances
through the boundary with minimal distortion of the
transient, good wave-permeable boundaries must also
correctly represent the influence of the boundaries on
the steady-state-forced solution. Some indication of the
influence of the lateral boundaries on the forced so-
lution may be obtained from Fig. 7, in which it appears
that all methods, except the ZG and FI schemes do a
similar and satisfactory job of representing the distur-
bance above the mountain. The subtle influences of
the lateral boundary conditions on the steady solution
are more clearly revealed by examining the fields at
ct/a = 14.5, by which time the solutions are nearly at
steady state. Figure 8 shows the steady-state height field
for all six solutions. The best results are obtained with
the second-order Engquist and Majda scheme. The
worst results are produced by the Raymond and Kuo
method. The FI and ZG methods also perform poorly.
The error patterns in the u# and v fields are somewhat
different from those in the height field and are shown
in Figs. 9 and 10.

Contours of v are compared with those for the wide-
domain simulation in Fig. 9. The second-order Eng-
quist and Majda solution is clearly the best. Significant
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errors occur over the upstream side of the mountain
in all the other methods. (Note that both the first-order
Engquist and Majda and the ZG schemes are almost
one contour interval in error, so that the results for
those methods are much worse than they may appear
at first glance.) The sponge-layer and Raymond and
Kuo methods also exhibit short-wavelength noise near
the downstream boundary that is too strongly forced
to be completely eliminated by the limited diffusion
in the four-point smoothing strip adjacent to the
boundary. The u field is compared with the large do-
main solution in Fig. 10. The FI and ZG schemes are
the worst; both produce large and spurious velocity
perturbations upstream of the mountain. In contrast
to the situation with the # and v fields, however, the
second-order Engquist and Majda u field is not clearly
superior to the results obtained with the first-order
Engquist and Majda method or the sponge-layer
scheme. Indeed, the second-order Engquist and Majda
result is somewhat inferior in the region over and
“south” of the mountain, although it does do a better
job near the upstream and downstream boundaries.

An idea of the time-dependent behavior of the com-
bined boundary-induced error in u, v, and 7 is provided
in Fig. 11, which shows the total error

N,

Wi 2 L)+ a(m) + o], (52)
where N,(t) is the number of time steps required to
advance the solution to time ¢ and, as in one-dimen-
sional tests, o4(n) is computed from (10). Consistent
with the results shown in Fig. 7, the second-order
Engquist and Majda and the Raymond and Kuo
schemes are the best at early times. The error in the
Raymond and Kuo scheme increases rapidly after N,
= 160, and after this time, the second-order Engquist
and Majda scheme is the best. The boundary-induced
errors do decrease with time after N, = 240 in the
sponge-layer method, so that by the end of the simu-
lation the error in the sponge-layer method is com-
petitive with that of the second-order Engquist and
Majda scheme. The large decrease in the error produced
by the sponge-layer scheme is, however, attributable
to the localized and steady-state character of the forced
solution and does not occur in problems where tran-
sient waves are continually forced in the interior.

In order to examine a case where a series of transient
waves impinges on the lateral boundaries, the station-
ary mountain was replaced by an oscillating lower
boundary of the form

E(t)=

ho sin(wt) coss[l (x* + yz)”z] ,
2a
Zy(x9y’t)= if _x2+y2£~’<(12',
0, otherwise.

(53)
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FIG. 8. Asin Fig. 7 except at ct/a = 14.5 after the impulsive start. The position of the mountain
is not indicated, but it is identical to that in Fig. 7. The region between the —2 contours in the
large-domain and limited-area solutions is shaded.

The preceding simulations were repeated using this os-
cillating lower boundary to force waves in a basic state
with zero mean wind. All parameters in the oscillating
mountain case were the same as in the fixed mountain
problem, except that a = 14.7 km, At = 7.07 s, @
= 27 /48At, and U = 0. The cumulative error E(?)
from this simulation is plotted in Fig. 12. The supe-

riority of the second-order Engquist and Majda method
is again apparent.
6. Discussion and conclusions

This paper has focused on the numerical simulation
of relatively simple wave-propagation problems. The
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F1G. 9. As in Fig. 8 except that the v field is contoured, and shading indicates the region
between the +7.5 contours in the large-domain and limited-area solutions.

correct solution to these problems was easy to deter-
mine and could, therefore, be used to unambiguously
assess the accuracy of several wave-permeable bound-
ary conditions. One-dimensional shallow-water flow
was the first case considered. The results of our one-
dimensional shallow-water tests indicate it is better to
externally specify ¢* in the one-way wave equation (1)
than to attempt to calculate it using (2). The externally

specified ¢* could deviate from the true phase speed
U + ¢ by 40%-60% and still yield better results than
schemes in which ¢* was calculated locally from (2).
Computations performed using the numerical solution
on a large periodic domain demonstrated that, except
during the passage of a wave trough or crest, (2) was
capable of diagnosing a reasonable approximation to
U + ¢ provided that all waves propagating past the
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FiG. 10. As in Fig. 9 except that the u field is contoured, and shading indicates the region
between the 15 contours in the large-domain and limited-area solutions.

point of calculation were really traveling in the positive
x direction. However, when the ¢* calculation was at-
tempted at the boundary of a limited domain, small
errors in the boundary conditions gave rise to leftward-
propagating waves. Although these leftward-propagat-
ing waves were initially small, they degraded the local
calculation of ¢*, since (2) does not apply at locations
where both rightward- and leftward-propagating waves
are present. The additional error in c* increased the

error at the boundary that amplified the spurious left-
ward-propagating waves, creating a positive feedback
that rapidly destroyed the reliability of the ¢* calcu-
lation.

The question of whether it is better to specify or
calculate ¢* was also examined through experimen-
tation with a two-layer shallow-water model. Although
the two-layer system is dispersive and waves with dif-
ferent phase speeds were present at the boundary si-
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multaneously, our results suggest that, once again, it
is better to externally specify some fixed c* than to
calculate c* at the boundary. In fact, the advantages
of specifying a fixed ¢* were more pronounced in the
two-layer system than in single-layer flow. A reason-
able, though not optimal, choice for ¢* was the phase-
speed of the fastest-moving wave. Attempts to refine
the Orlanski-type phase-speed calculation by tempo-
rally or spatially smoothing c* were explored, but these
did not yield significant improvement.

Clark (1979) and Hedley and Yau (1988) have sug-
gested that it is better to calculate ¢* than to fix it. Our
results are not necessarily in conflict with those of
Clark, and Hedley and Yau, however, since there is a
considerable difference in the nature of the test prob-
lems. Their studies examined the difference between
large- and small-domain simulations of deep convective
clouds. As noted by Clark, the surrounding fluid exerts
a feedback on the convection through its “inertia,”
which resists the spinup of a convergent lower-level
inflow and a divergent upper-level outflow. Thus, the
boundary condition that best mimics the convection
in the larger domain may be one producing a spurious
inward-propagating signal that approximates the influ-
ence of the surrounding fluid. On the other hand, a
true radiation boundary will not communicate signals
inward through the boundary, and in such tests, it may
not provide the best results. The preceding concerns
should not, however, be interpreted as suggesting that
radiation boundary conditions are bad for cloud mod-
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FI1G. 11. Cumulative error [see (52)] as a function of time step in
shallow-water flow over topography. Curves shown are for the first-
order Engquist and Majda method (EM 1), the second-order Engquist
and Majda method (EM2), the fixed-inflow method (FI), the zero-
gradient method (ZG), the Raymond and Kuo method (RK) and
Davies’ sponge layer (DSP).
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FIG. 12. As in Fig. 11 except the waves are forced
by an oscillating lower boundary.

eling. Provided the computational domain is suffi-
ciently large, the nonlinear feedback of the surrounding
fluid on the convective cloud will be very weak, and
true radiation boundary conditions should allow the
most accurate numerical simulation.

Wave-permeable boundary conditions for two-di-
mensional shallow-water flow have also been examined
in this paper. Although two-dimensional shallow-water
waves travel at a known phase speed, the trace velocities
along the x and y axes are functions of wavelength and,
therefore, (1) provides only an approximate radiation
boundary condition for two-dimensional waves.
Engquist and Majda (1977) suggested a way to improve
the accuracy of (1), but their original formulation does
not conveniently generalize to cases with nonzero mean
flow. In this paper, the one-way wave equation tech-
nique of Engquist and Majda was used to construct
new boundary conditions that are easily applied to cases
with a mean flow. The well posedness of the new
boundary conditions has not been rigorously investi-
gated, but the new conditions do require the group
velocity of all waves at the boundary to be directed
outward through the boundary, which is essential for
well posedness. These boundary conditions have
proved stable and accurate in practice. Indeed, they
provided the best results in our two-dimensional test
cases. In particular, they performed better than the first-
order one-way wave equation ( 1), the method of Ray-
mond and Kuo (1984), the eight-point sponge of Dav-
ies (1983), and two hybrid methods.

Many mesoscale models of the atmosphere require
open boundary conditions for three-dimensional strat-
ified flow. Although boundary conditions for the full
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three-dimensional problem have not been explicitly
tested in this paper, the preceding results suggest the
following strategy. A fixed ¢* could be estimated, per-
haps as the phase speed of the most rapidly moving
internal gravity wave NH/=. This ¢* could replace ¢
in the one-way wave equations (33) and (36) [or more
generally (A1) and (A2)], which could then be used
as lateral boundary conditions for stratified flow. Future
research will be required to evaluate the effectiveness
of this procedure in fully three-dimensional mesoscale
models.
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APPENDIX
Formulas for Mean Flows at Arbitrary Angles

For generalized two-dimensional mean flow, the
second-order one-way wave equations at the x bound-
aries become
3% 3%

S +tWUxo)—+V(U=xc
or? ( ) otdx ( )

3%
dxady
+2V—62—¢+ V2$£(U+ ) ﬁ‘3—0
dtay R P
Here U and V denote the components of the mean
flow parallel to the x and y coordinates. The top set of
signs should be used at the right x boundary and the
bottom set at the left boundary. The expression for the
y boundaries, which may be obtained by direct deri-
vation or by interchanging x with y and U with V in
(Al),1s )
02¢ 62¢ 62¢
5 tVxe)—+UlV=xc
( ) otdy ( ) dydx
3%

ar?
62
+2U—+[U2¢§(Vi c)] ¢

(A1)

=0. (A2)

dtdx dx?
The top set of signs should be applied at the north y
boundary and the bottom set at the south boundary.
The preceding conditions were tested in the circular
mountain problem, described in section 5, and per-
formed well regardless of the orientation of the mean
flow. The north y boundary condition was discretized
as

I ae——
87 o172 + (V+¢)02b,0%-1)2
RGP —
+ UV + ¢)020,¢7 6172 + 2Udy82:07p-1,2
—_—2
+ LU= c(V+¢)/2182¢ 512 =0, (A3)
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where the subscript b denotes the index of a boundary
point. The interior solution was updated first, in which
case the implicit coupling in (A3) reduces to a tridi-
agonal system for the boundary points ¢/4'. As in the
V = 0 case, ¢35 and ¢3!, were calculated using the
first-order one-way wave equation, which does not re-
quire the computation of derivatives parallel to the
boundary.
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