
1.  Introduction
Understanding the microphysical processes of organized mesoscale convective systems (MCSs) and accurately 
parameterizing them in numerical models remains a great challenge for weather forecasters and scientists. One 
of the factors limiting the improvement in the prediction of storm microphysics is the lack of three-dimensional 
observations on the drop size distributions (DSDs) of hydrometeors within the MCSs. Biases in the DSDs have 
substantial impacts on model performance. Idealized numerical simulations have shown that prescribed rain-
drop DSDs and the treatment of raindrop breakup and size sorting yield substantial influences on the MCS 
characteristics like cold-pool intensity and low-level lifting through raindrop evaporation (Dawson et al., 2010; 
Morrison et al., 2012; Planche et al., 2019). In practice, we mostly rely on research flights and disdrometers 
to acquire in-situ measurements of hydrometeor DSDs. However, airborne measurements are costly, and only 
limited observation data can be collected during field campaigns. An advantage of airborne platforms is that they 
directly captured the DSD characteristics within the storm and how DSD varies with altitude (e.g., Stechman, 
McFarquhar, Rauber, Bell, et al., 2020) during flight hours. Ground-based disdrometers cannot provide DSD 
information in the vertical but can provide surface DSD measurements over a longer period of time.

Polarimetric radars provide an alternative method to estimate the three-dimensional DSD information in weather 
systems with greater spatial details and higher temporal frequency. Among various polarimetric variables, differ-
ential reflectivity (ZDR) and specific differential propagation phase (KDP) are particularly useful in characterizing 
DSDs. The ZDR is the ratio between reflectivity factors in the horizontal and vertical polarization. The ZDR reveals 

Abstract  An object-based technique was utilized to identify hydrometeor size-sorting signatures at lower 
levels in the convective regions of 10 mesoscale convective systems (MCSs) during the 2015 Plains Elevated 
Convection at Night (PECAN) field campaign. Composite statistical analysis indicates that the magnitudes of 
size-sorting signatures (the separation distances between rain diameter maxima and concentration maxima) 
are nonlinearly correlated to the echo-top height, rain mass beneath the melting level, and precipitation rates at 
higher percentiles. To explore this correlation, the weather forecasting and research model was used to simulate 
the 20 June 2015 MCS during PECAN. Statistical analysis of the model outputs indicates more active riming 
growth and quicker graupel fallout at warmer temperatures near areas with larger separation distances. While 
updraft intensity above the melting level was also positively correlated to separation distances, this correlation 
was only statistically significant within certain temperature ranges. Additional analyses reveal that the higher 
intense precipitation potential near signatures with large separation distances could be attributed to precipitation 
production from the melted graupel. Finally, spatial correspondence between graupel distribution at the melting 
level and rain distribution at the lowest model level illustrates the critical role of graupel sedimentation and 
sorting in creating size-sorting signatures in MCSs during the PECAN field experiment.

Plain Language Summary  Recent upgrades in the US radar networks to polarimetric capabilities 
enabled routine measurements of how the sizes and concentration of raindrops vary in weather systems. 
Statistical analysis of radar data and output from a numerical model shows that the spatial distributions of 
raindrop sizes and concentration in the low levels could be exploited to elucidate physical processes in rainy 
weather systems. Specifically, low-level raindrop size-concentration separation may provide extra information 
on how much latent heating is released or absorbed when water transitions between vapor, liquid, and solid 
phases. This new information could be important because heating aloft can affect the intensity of the weather 
systems and the amount of precipitation produced by weather systems.
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the dominant particle shape within a radar sampling volume, with ZDR > 0 dB indicating the volume to be domi-
nated by oblate particles. The KDP measures the range-dependent phase changes of the horizontally- and vertical-
ly-polarized radar waves. Positive KDP are expected in areas with (a) a high concentration of oblate rain drops, (b) 
small melting hailstones, and (c) aggregates of oblate ice crystals (Rauber & Nesbitt, 2018).

The use of polarimetric radars for severe weather systems has revealed DSD signatures that were unobserved 
previously. These signatures include the enhanced ZDR along reflectivity gradients in the forward flanks of super-
cells (ZDR arcs; Dawson et al., 2014; Kumjian & Ryzhkov, 2008), and the ZDR-KDP separations in different shear 
quadrants of hurricane eyewalls (Didlake & Kumjian, 2018; Feng & Bell, 2018; Laurencin et al., 2020). Since 
hydrometeor fall speeds are positively correlated to particle sizes, larger particles should sediment quicker and 
experience less wind advection (large ZDR) than the remaining smaller particles (large KDP). This process, known 
as hydrometeor size sorting, could result in the observed ZDR-KDP separations.

While observational studies of hydrometeor size sorting are plentiful in the literature, further investigation is 
still needed to clarify the uncertainties in this process. The first uncertainty is how the size sorting of ice hydro-
meteors contributes to the variabilities of low-level rain DSD. Dawson et al. (2015) (hereafter DMR15) showed 
that inputting supercell hodographs to a rain sedimentation model was sufficient in producing the low-level DSD 
variabilities which were similar to the ZDR arcs. Similarly, Laurencin et al. (2020) (hereafter LDL20) reported 
that applying the low-level winds of Hurricane Matthew in 2016 to an analytical model recreated the ZDR-KDP 
azimuthal separation in Matthew's eyewall. However, DMR15 and LDL20 restricted their investigation to the 
sorting of rain shafts with prescribed DSDs and did not consider ice sorting aloft. Indeed, numerical simula-
tions with free-evolving DSDs of ice particles indicated that deep-layer storm-relative winds and the sorting 
of hail particles are more important than the sorting of raindrops in producing the ZDR arcs in the left flank of 
right-moving supercells (Dawson et al., 2014). The second uncertainty is the role of updrafts. While both updrafts 
and storm-relative winds can lead to sustained size sorting (Kumjian & Ryzhkov, 2012), previous studies (e.g., 
DMR15; LDL20; Loeffler et al., 2020) mostly focused on storm-relative winds. These studies implicitly assumed 
that the effect of storm-relative winds overwhelmed that of the updrafts. This assumption is reasonable for super-
cells and tropical cyclones (TCs), which have intense horizontal cyclonic flows. While Feng and Bell  (2018) 
also considered how TC updrafts and downdrafts may affect DSD distributions, the link between updrafts and 
low-level DSD spatial distributions in other weather systems remains an open question. For example, updrafts 
may be more important in regulating the size-sorting signatures in squall-line MCSs, where the circulations are 
more two-dimensional than those in supercells.

In addition to addressing the above uncertainties, we are also interested to know whether or not the magnitudes 
of ZDR-KDP separations (size-sorting magnitudes) can be used to evaluate convective variabilities. Yuter and 
Houze  (1995b) suggested that hydrometeor trajectories in MCSs could be understood by the “particle foun-
tain” model. Larger hydrometeors formed in updraft core sediment closer to the updrafts due to gravity sorting, 
whereas smaller hydrometeors sediment further rearward as updraft cores expanded and advected rearward by 
the front-to-rear flow. Based on the “particle fountain” model, we hypothesize that larger size-sorting magnitudes 
would positively correlate to ice growth, rearward advection of smaller ice hydrometeors, and updraft intensity.

In this study, an object-based technique was applied to 74.5 hr of radar observation data to identify the size-sort-
ing signatures in 10 nocturnal MCSs that were observed during the 2015 Plains Elevated Convective at Night 
(PECAN; Geerts et  al.  [2017]) field campaign. The magnitudes of these signatures are compared to various 
convective characteristics, emphasizing identifying trends between size-sorting magnitude, convective intensity, 
and precipitation intensity. To compliment the observational analysis, a numerical simulation of the MCS on 20 
June 2015 during the PECAN campaign is also conducted to investigate the dependence of statistical trends on 
different microphysical processes. In summary, this study will address the following three scientific questions:

1.	 �Are the magnitudes of hydrometeor size-sorting signatures in nocturnal MCSs statistically related to convec-
tive updraft characteristics?

2.	 �If the hydrometeor size-sorting magnitudes are related to updraft strengths, what microphysical processes 
contribute the most to this relationship?

3.	 �To what extent can we use hydrometeor size-sorting magnitudes to diagnose the relative contributions of 
microphysical processes to convective thermodynamics and precipitation pathway?
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2.  Data Sources and Analysis Technique
2.1.  Polarimetric Radar Observations

We utilized the level-II polarimetric products from the Next Generation Weather Radar (NEXRAD) WSR-88D 
network to examine hydrometeor size-sorting signatures in the convective regions from 10 nocturnal MCSs 
during the PECAN field campaign (Table 1). The S-PolKa radar, deployed during PECAN, was used in the 
composites for the two analyzed MCSs that entered its observation range on 14 July and 15 July 2015. NEXRAD 
radars performed regular plain position indicator (PPI) scans at 14 elevation angles, with a typical volume scan of 
5–12 min. The Python ARM Radar Toolkit (Py-ART; Helmus & Collis [2016]) was used to merge radar obser-
vations onto a Cartesian grid with a horizontal grid spacing of 1 km and the vertical grid spacing of 0.5 km. The 
main radar parameters analyzed in this study are radar reflectivity (Z), differential reflectivity (ZDR), and specific 
differential propagation phase (KDP). Systematic biases in ZDR observations were calibrated using the observa-
tions in radar-inferred dry aggregates, which are known to have very small ZDR values (Ryzhkov & Zrnic, 1998; 
Zittel et  al., 2014). The KDP parameters were derived with the procedure outlined in Lang et al.  (2007). The 
differential phase (𝐴𝐴 𝐴𝐴𝐷𝐷𝐷𝐷 ) was filtered with a 21-gate finite-impulse response filter, and the half slope of a line fitted 
to the filtered 𝐴𝐴 𝐴𝐴𝐷𝐷𝐷𝐷 was defined as the KDP. Non-meteorological signal returns were removed with an insect-fil-
tering algorithm (Lang et al., 2007) and a reflectivity texture-based ground-clutter removal algorithm (Gabella 
& Notarpietro, 2002). Radar gates with correlation coefficient (𝐴𝐴 𝐴𝐴ℎ𝑣𝑣 ) values less than 0.8 were not included in 
the compositing procedure. Besides the systematic bias, ZDR measurements can also be biased by non-uniform 
beam filling (NUBF) and depolarization streaks. These artifacts are most common at distant ranges and down-
stream of convective cells. Following Homeyer and Kumjian (2014), we mitigated these biases by merging radar 
observations taken at different locations and viewing angles into a range-weighted composite. To further reduce 
the contamination from the NUBF and depolarization streaks, observations that were not within 200 km from 
individual radars were discarded from the analysis.

2.2.  WRF Simulations on Selected PECAN MCS Cases

The MCS on 20 June 2015 was simulated using Version 3.9 of the Weather Forecasting and Research (WRF; 
Skamarock et  al.  [2008]) Model. This case was chosen because of its leading-line trailing stratiform (LLTS) 
structure, which is one of the most common and well understood MCS archetype (e.g., Houze et al., 1989; Parker 
& Johnson, 2000). The simulation was performed with a triple-nested model domain with 27-, 9-, and 3-km grid 
spacing, respectively. Three WRF domains are shown in Figure 1. All domains contained 55 vertical levels, with 
greater vertical resolution near the melting level (∼4 km) and boundary layer. The WRF model was initialized 
with the 32-km NCEP North American Regional Reanalysis (NARR; Mesinger et al. [2006]) data at 1500 UTC 
on 19 June and ran for 48 hr. The NARR wind (u, v) and temperature (T) fields above the boundary layer were 

Case Analysis period (UTC) Radar used in the mosaic Number of size sorting objects identified

5 June 2015 5:00–11:00 KTWX, KEAX 270

11 June 2015 1:30–9:30 KUEX, KLNX, KOAX, KTWX 581

12 June 2015 4:00–10:00 KAMA, KDDC, KVNX, KTWX 535

17 June 2015 2:00–9:00 KUEX, KGLD, KLNX, KOAX 147

20 June 2015 3:00–9:30 KUDX, KBIS, KABR, KFSD 321

26 June 2015 2:30–10:30 KUEX, KOAX, KTWX, KEAX, KSGF 528

6 July 2015 1:30–7:00 KABR, KFSD 372

9 July 2015 2:00–9:00 KAMA, KFDR 695

14 July 2015 3:00–8:00 KDDS, KGLD, NCAR SPolKa 242

15 July 2015 0:00–9:00 KGLD, KDDC, NCAR SPolKa 305

Table 1 
List of the (Left Column) 10 Observed Nocturnal MCSs During the PECAN Field Campaign Analyzed in This Study, (Second Column) the Analysis Period for Each 
MCS, (Third Column) NEXRAD and SPolKa Radars Used to Generate Mosaics for Each MCS, and (Fourth Column) the Number of Size Sorting Objects Identified 
During the Analysis Period
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nudged every 3 hours for the first 30 hr of the simulation period to improve 
the representation of synoptic conditions. The model setting and physical 
parameterizations for the WRF simulation are listed in Table 2.

2.3.  Object-Based Identification of Low-Level Size Sorting Signatures

The algorithm used to identify low-level size-sorting signatures in convective 
regions within MCSs is similar to that originally proposed for non-supercel-
lular tornadic storms (Loeffler & Kumjian, 2018) and supercellular storms 
(Loeffler et al., 2020). We first identified the geometrical centers (i.e., the 
centroids) of different ZDR and KDP objects, that is, contiguous areas with 
enhanced ZDR and KDP, at 1-km height AGL. We used a 90-percentile magni-
tude threshold to produce “first guess” ZDR and KDP objects. These initial 
objects were adjusted manually to ensure that they accurately outlined local 
ZDR and KDP enhancements at scales of approximately 10–20 km within the 
MCS convective regions. The percentile thresholds used ranged from 90 
(𝐴𝐴 2.05 ± 0.35 dB for ZDR; 𝐴𝐴 0.69 ± 0.27

𝑜𝑜
km−1 for KDP) to 95 (𝐴𝐴 2.45 ± 0.33 dB for 

ZDR; 𝐴𝐴 1.00 ± 0.32km−1 for KDP). We further applied a 75-percentile size thresh-
old to remove objects smaller than 10 km. Finally, the centroid coordinates 

for each object were found and stored separately. While this method is inherently subjective, large variability in 
ZDR and KDP values in convective regions makes it difficult to determine a threshold that could identify ZDR and 
KDP objects at suitable spatial scales for all cases and all times (Martinaitis, 2017).

The second part of the algorithm involves matching different ZDR and KDP objects. A ZDR object was matched to 
a KDP object if it satisfies the following criteria: 

�1.	� the separation distance between the centroids was smallest for all object combinations, where the separation 
distance (𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 ) was the geometrical distance between the centroid of a ZDR object (����

 , ����
 ) and the centroid 

of a KDP object (����
 , ����

 ) as

���� =
√

(

����
− ����

)2 +
(

����
− ����

)2
� (1)

Figure 1.  Domain setting used to simulate the 20 June 2015 MCS.

Item Outer domains Innermost domain References

Grid spacing 27 km, 9 km 3 km

Domain dimensions 4185 × 4185, 2430 × 2430 km 1335 km × 1002 km

Vertical sigma levels 55, 55 55

Model top pressure 100 hPa, 100 hPa 100 hPa

ICs and LBCs NARR NARR

Microphysics NSSL two-moment NSSL two-moment Mansell et al. (2010)

Cumulus parameterization Kain-Fritsch None Kain (2004)

Longwave radiation RRTM RRTM Mlawer et al. (1997)

Shortwave radiation Dudhia Dudhia Dudhia (1989)

Surface layer Eta similarity Eta similarity Janjic (1994)

Land surface model Unified Noah Unified Noah Tewari et al. (2004)

Boundary layer physics MYJ MYJ Janjic (1994)

Table 2 
List of WRF Grid Specification, Physical Parameterizations, Initial and Boundary Conditions Used to Simulate the 20 June 
2015 MCS
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�2.	� for a ZDR object, there was at least one KDP object where the 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 was less than 25 km; and (c) the angle between 
centroids was close to the direction of MCS movement. Separation distances (𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 ) were used herein as a 
quantitative measurement of size-sorting magnitudes. Matched ZDR and KDP objects are denoted as “size-sort-
ing objects” hereafter

Figure 2 shows an example of size-sorting objects simultaneously identified at a particular time (0515 UTC on 5 
June 2015) with the algorithm given above. The algorithm identified two areas with locally enhanced ZDR and KDP 
magnitudes near the system edge. The area near X = 75 km was of a large dobs, whereas the area near X = 105 km 
was of a smaller dobs. While there were several areas with enhanced KDP in the rear of the system, these areas 
were filtered out because they were either too small or the ZDR values near these KDP areas did not exceed the 
magnitude threshold.

Since radar polarimetric products cannot be directly predicted by the WRF model, the WRF outputs are converted 
to ZDR and KDP equivalents with a radar simulator (Brown et al., 2016; Jung et al., 2010) to ensure a fair compar-
ison between radar observations and model results. The WRF-equivalent separation distance (𝐴𝐴 𝐴𝐴𝑊𝑊𝑊𝑊𝑊𝑊 ) was defined 
as the geometrical distance between the centroids of the simulated ZDR and KDP objects.

2.4.  Determining Local Characteristics Near Size-Sorting Objects

In the following sections, kinematics, microphysical and thermodynamic fields near the size-sorting objects were 
extracted and compared to their separation distances. To ensure representativeness at a convective scale, values 
collocated to a particular size-sorting object were the 75 percentile values of different variables within a 9-km 
diameter circle. The center of the circle was at the midpoint between ZDR and KDP centroids.

Since the collocation was performed at each time step, the output value represents the instantaneous measure-
ment of each variable near each size-sorting object. This approach may be problematic for several reasons. First, 
the algorithm outputs may be biased against slower microphysical processes. Second, the algorithm outputs 
may misrepresent the “local characteristics” near sloped updrafts if the collocation was done in a point-to-
point manner. The approach adopted in this study, which takes the environment surrounding each object into 
account,  may minimize these uncertainties.

It is known that the thermodynamic structures of convective regions within MCSs are distinct from those of the 
stratiform regions (Braun & Houze, 1996; Gallus & Johnson, 1991). Hence, the relationship between local MCS 

Figure 2.  Example of size sorting object identification. Colored are radar observations of (a) ZDR and (b) KDP at 1 km. Red 
contours are the areas where ZDR values exceed the 95th value percentile, white contours are the areas where KDP values 
exceed the 93rd value percentile. For contour objects that also exceed a 75th size percentile, the contour centroids are marked 
with square markers. Separation distances at this time are represented by gray lines in Figure 2b.
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kinematics and 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 (𝑑𝑑𝑊𝑊𝑊𝑊𝑊𝑊 ) could be dependent upon their locations in the MCS. To remove this ambiguity, the 
radar reflectivity (Z)-based method of Steiner et al. (1995) was used to partition the radar data at 2-km height into 
convective and stratiform regions, and the parameters were tuned for convective systems over the Great Plains. 
All objects that were not within the convective regions were discarded from the analysis.

The size-sorting object dataset used herein consists of 3,996 objects that were identified from NEXRAD obser-
vations on 10 MCSs during the PECAN field campaign (Table 1). For the 20 June MCS simulated by the WRF, 
a total of 210 objects identified between 0600 and 1030 UTC was used to produce the statistical results shown 
in Section 5.

3.  Statistical Characteristics of the Observed PECAN MCS Size-Sorting Objects
Figure 3a shows the bivariate distribution of PECAN MCS composite between separation distance (𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 ) and the 
75th percentile values of 20-dBZ echo-top height (ETH) in the areas between the 𝐴𝐴 𝐴𝐴𝐷𝐷𝐷𝐷 and 𝐴𝐴 𝐴𝐴𝐷𝐷𝐷𝐷 objects. ETH 
is used here as a proxy to answer our first research question on the relationship between size-sorting magnitude 
and updraft intensity. Scatter points represent the ETHs collocated to each object, whereas contours represent 
the normalized frequency distribution. The contours in Figure 3a show that objects with smaller 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 were mostly 
associated with lower ETHs. The ETH versus separation distance (𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 ) distribution for each PECAN MCS indi-
cates a large case-dependent variability, however. While 8 out of 11 PECAN MCSs exhibited increases in ETHs 
with the increasing 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 (not shown), the 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 magnitude where the ETH increase began and the increase rate 
varied between cases.

We now answer our second scientific question on whether 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 can be used to infer microphysical variabilities. 
Since ETH is nonlinearly related to 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 , we hypothesized that 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 should reflect microphysical variabilities for 
two reasons: (a) greater positive buoyancy and latent heat release in stronger updrafts, and (b) higher amount of 
large ice hydrometeors in stronger updrafts, which could enhance cold rain processes (Lasher-Trapp et al., 2018).

Figure 3b shows the rain-mass (𝐴𝐴 𝐴𝐴𝑤𝑤 ) distribution at 3.5-km, or 0.5-km beneath the 4-km melting level. Choosing 
a vertical level slightly beneath the melting level enables a discussion on the contributions from melted hydrome-
teor to 𝐴𝐴 𝐴𝐴𝑤𝑤 . The 𝐴𝐴 𝐴𝐴𝑤𝑤 was derived from Z and 𝐴𝐴 𝐴𝐴𝐷𝐷𝐷𝐷 with the relationship by Cifelli et al. (2002),

𝑀𝑀𝑤𝑤 = 0.7 x 10
−3
𝑍𝑍0.886

(

10
𝑍𝑍𝐷𝐷𝐷𝐷∕10

)−4.159
.� (2)

Figure 3.  Plains Elevated Convection at Night mesoscale convective systems composite bivariate scatter distributions of 
the separation distance of each size sorting objects and (a) the collocated 75th percentile 20-dBZ Echo Top Height (km), (b) 
liquid water mass at 3.5 km. Superposed to the scatter plots are the normalized frequency distributions. The contours are at 
intervals of 0.11 from 0 to 0.99.
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It is clear in Figure 3b that the 𝐴𝐴 𝐴𝐴𝑤𝑤 at 3.5-km level increased non-linearly with 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 , and the normalized frequency 
distribution for 𝐴𝐴 𝐴𝐴𝑤𝑤 rose rapidly for objects with 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 of 0–8 km. For objects with 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 > 8 km, the increase rate 
of 𝐴𝐴 𝐴𝐴𝑤𝑤 was more gradual than that for objects with 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 < 8 km. Compared to the ETH distribution in Figure 3a, 
the 𝐴𝐴 𝐴𝐴𝑤𝑤 distribution at 3.5-km level is narrower at higher 𝐴𝐴 𝐴𝐴𝑤𝑤 values, suggesting less case-dependent variabilities.

To identify the type of precipitation which was most sensitive to the 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 , the full statistical distributions between 
precipitation rates (R) and separation distance (𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 ) at 0.5-km height are shown in Figure 4. Precipitation rate 
(R) was derived at each radar gate with a blended algorithm that objectively chose different R estimations based 
on the magnitude of polarimetric variables (Cifelli et al., 2011). Figure 4a shows that R changed little with the 
increasing 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 at 25th percentile. A nonlinear increase in R with the increasing 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 can be identified at larger 
percentiles (Figures 4b–4d), however. At 75th percentile (Figure 4c), R rose at a rapid rate for 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 of 0–8 km and 
rose at a more gradual rate for 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 > 8 km.

While the raindrops associated with mixed-phase and ice microphysics (“cold rain”) cannot be directly distin-
guished from warm rain, the contribution of ice-phase microphysics to R likely peaks at or slightly beneath the 
melting level (Jensen et al., 2018; Kain et al., 2000; Yang & Houze, 1995). Thus, we inferred from Figure 3b 
that the ice- and mixed-phase microphysics could be producing more 𝐴𝐴 𝐴𝐴𝑤𝑤 near large 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 objects. The similarity 
between 𝐴𝐴 𝐴𝐴𝑤𝑤 and R distributions at high percentiles in Figures 4c and 4d also implies that the greater likelihood 
of intense precipitation near large 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 objects may be attributable to the ice- and mixed-phase microphysical 
processes. These inferences will be discussed further with WRF simulation in Sections 5 and 6.

4.  Validating the Simulated 20 June 2015 MCS With Observations
4.1.  MCS Track and Morphology

Figure 5 compares the temporal evolution of the vertical column-maximum radar reflectivity between the obser-
vation and WRF simulation from 0600 UTC to 1100 UTC on 20 June 2015. The observed MCS was initially 
located in central South Dakota at 0600 UTC and propagated eastward in the next 5 hrs. The observed movement 
of this MCS (Figures 5f–5j) was reproduced reasonably well by the WRF simulation (Figures 5a–5e). Both the 
simulated and observed MCSs were of the LLTS archetype. There were certain times when the observed and 
simulated MCSs were structurally different. For example, the observed MCS at 0600 UTC (Figure 5f) consisted 
of a bow echo and two secondary convective lines northeast and southwest of the bow echo. While the WRF 
produced a bow echo with similar orientation to the observed (Figure 5a), the simulated northeastern secondary 
line was less organized than the observed. The morphological differences disappeared after 0700 UTC (Figures 5b 
and 5g), as the simulated northeastern line grew upscale and merged with the bow echo.

Figure 4.  Same as Figure 3, but for (a) precipitation rates at 25th percentile, (b) precipitation rates at 50th percentile, (c) precipitation rates at 75th percentile, and (d) 
precipitation rates at 95th percentile. The contours are at intervals of 0.11 from 0 to 0.99.
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4.2.  Convective Echo Structure

Figure  6 compares the observed and simulated contoured frequency by altitude diagrams (CFADs; Yuter & 
Houze, 1995a) of radar reflectivity (Z) for convective pixels identified with the Steiner et  al.  (1995) convec-
tive-stratiform partition method during the mature phase of the 20 June MCS. The mature phase for the 20 June 
MCS was defined as periods with steady mean 20 dBZ echo-top heights (0600–1000 UTC). For this compari-
son, we track how the highest frequency contours in each CFAD change at different vertical levels. Since Z is a 
function of hydrometeor diameter and number concentration, its vertical gradient contains information on how 
microphysical processes evolve in the vertical.

The CFAD of observed Z in the convective region (Figure 6a) contains three areas of interest. The first is the 
steady increase in Z with decreasing altitude beneath 4 km. Warm layer Z enhancement is indicative of warm rain 

Figure 5.  Model validation of the 20 June mesoscale convective system (MCS). The upper row shows the simulated column-maximum reflectivity maps, valid at (a) 
0600 UTC, (b) 0700 UTC, (c) 0800 UTC, and (d) 0900 UTC. The simulated MCS evolution is compared to the next generation weather radar reflectivity mosaic (lower 
row; e, f, g, h), valid at the identical times as those shown for the weather forecasting and research simulation.

Figure 6.  Reflectivity echo structural validation. Panels show the (a) observed reflectivity contoured frequency by altitude diagrams (CFAD) and (b) weather 
forecasting and research (WRF)-simulated reflectivity CFAD during the mesoscale convective system mature phase (0600–1000 UTC), and (c) the difference between 
the WRF-simulated and observed reflectivity. Grid values that were not flagged as convective echoes with the Steiner et al. (1995) convective-stratiform partition 
algorithm were omitted from analysis. 4-km (black dashed) and 8-km (red dashed) heights are highlighted for easier comparison with the text.
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processes, that is, collision-coalescence of rain (Kumjian and Prat,  2014). 
The second is the Z increase with decreasing altitude between the melting 
level (4  km) and 8  km. Z increase in this layer is related to mixed phase 
growth. The third one is the modest decrease in Z above 8 km. The main 
difference of Z CFAD between the observed (Figure 6a) and the simulated 
(Figure  6b) is that the Z reduction above melting level occurs at a much 
higher altitude in the simulated MCS. This error resulted in a ∼10 dBZ for Z 
overestimation between 8 and 10 km. The overestimation of Z at upper levels 
(above 8 km in this case) is common for cloud-resolving simulations of deep 
convective systems (e.g., Bodine and Rasmussen, 2017; Stanford et al., 2017; 
Varble et al., 2011; Varble et al., 2014; Wu et al., 2013). Stanford et al. (2017) 
attributed upper-level Z overestimation to ice size bias in low temperatures. 
Another potential cause of this bias is overpredicted hydrometeor lofting in 
convective updrafts. Despite this bias, the simulated and observed Z CFADs 
were comparable below 8 km. Specifically, the simulated change rates of Z 
beneath the melting level and 4–8 km were both within 20% of the observed 
values (Table 3).

4.3.  Spatial Correspondence Between Size-Sorting Signatures and Low-Level Flow Directions

To verify whether the WRF model produced size-sorting signatures or not, we compared the simulated mass-
mean rain diameter versus rain concentration (Dmr-NTr) distributions at the lowest model level at 0720 UTC 
(Figures 7d–7f) to the observed ZDR-KDP distributions at 1-km height at 0620 UTC (Figures 7a–7c). The timing 
difference was to account for the 1-hr delay in the merger of the secondary line with the main MCS. Radial veloc-
ity measurements from two NEXRAD radars (KABR and KFSD) were used to retrieve ground-relative winds (ug, 
vg) and vertical wind (w). We then calculated the system-relative wind (ur, vr) by subtracting the MCS movement 
vector (uMCS, vMCS) from ground-relative winds. MCS movement was determined by tracking the movement of 
the centroids of the closed 20-dBZ contours from 0300 to 1200 UTC. The movement vector of the MCS (uMCS, 
vMCS) was determined to be (26.1, −1.35) m s −1 for the observed 20 June MCS, and (24.5, −1.67) m s −1 for the 
simulated MCS, respectively.

Figures 7b and 7c show that for the observed MCS, the enhancements in KDP were located downwind of both 
the ZDR enhancements and updrafts. The angle between ZDR and KDP enhancements roughly paralleled the 
system-relative inflow. These observed spatial patterns were reproduced in the WRF simulation (Figures  7d 
and 7f). For example, two areas with larger Dmr could be found near X = 900 km and X = 913 km, and down-
wind of these Dmr enhancements and updrafts were two isolated areas with enhanced NTr near X = 885 km and 
X = 900 km in Figure 7f. In the next section, we will use the simulated MCS to discuss the thermodynamic and 
microphysical implications of size sorting signatures.

5.  Low-Level Size-Sorting Signatures in the WRF-Simulated 20 June 2015 MCS
5.1.  Statistical Relationship Between Convective Height and Size Sorting Effect

Bivariate distributions of ETH versus separation distance for the observed and simulated MCSs on 20 June 2015 
are shown in Figures 8a and 8b, respectively. WRF underestimated the separation distances in the 20 June MCS 
(Figures 8a and 8b). The simulated ETH-���� bivariate distribution also contains a subset of small-���� , large 
ETH objects (Figure 8b). We cannot identify such objects in the observed distribution (Figure 8a). Despite these 
differences, critical characteristics of the observed ETH-𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 distribution were retained in the WRF simulation, 
namely the shift toward higher ETHs with increasing ���� magnitudes (Figures 8a and 8b). This suggests that 
WRF captured the main statistical correlation between the observed separation distances (𝐴𝐴 𝐴𝐴𝑂𝑂𝑂𝑂𝑂𝑂 ) and the ETHs.

dZ/dz (dBZ km −1)

Layer Observed WRF

Mature 2–4 km −1.55 −1.82

4–8 km −2.80 −2.46

8–14 km −2.61 −5.71

Weakening 2–4 km −1.66 −2.21

4–8 km −3.80 −3.51

8–14 km −1.80 −4.43

Note. Shown are the observed dZ/dz and the WRF-simulated dZ/dz during the 
MCS mature and weakening phases.

Table 3 
The Change of Radar Reflectivity With Altitude (dZ/dz; dBZ km −1) in Three 
Vertical Layers (2–4 km, 4–8 km, and 8–14 km, Repsectively)
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5.2.  Statistical Relationship Between Size Sorting Effect and Microphysical Properties

Figure  8c shows the bivariate distribution of ���� versus ice/liquid water path (IWP/LWP). The normalized 
���� − IWP bivariate frequency distribution (blue contours in Figure  8c) shifts to higher IWP magnitudes as 
���� increase. On the other hand, normalized ���� − LWP bivariate frequency distribution (orange contours in 
Figure 8c) shows no appreciable trend with increasing ���� up to 6 km and trends slightly toward lower LWP 
magnitudes when ���� increases beyond 6 km.

A reasonable question to ask is whether or not the surface precipitation is also correlated to ���� . We separated 
the simulated size-sorting objects into two categories that are roughly the same sample size. The first category 
contained objects with ���� smaller than the median ���� of 4.5 km, whereas the second category was for objects 
with ���� > 4.5 km. The statistical distributions of R for the two object categories during the MCS mature phase 
are compared in Figure 9. The statistical distributions of R for these two object categories were very similar 
for weaker precipitation rate (R < 60 mm hr −1). However, large ���� objects are more likely to produce intense 
precipitation (R > 60 mm hr −1; strongest 19% of the R samples) than the small ���� objects.

Figure 8c shows that more ice and mixed phase hydrometeors were produced near the large ���� objects. The 
sedimentation and subsequent melting of these ice particles are hypothesized to contribute to the greater likeli-
hood of intense rainfall near large ���� & ���� objects. We will evaluate this hypothesis with vertical profiles of 
different rain-mass components in Section 6.

Figure 7.  Validating size sorting process in the weather forecasting and research (WRF) simulation. Upper row shows the KABR-KFSD composite of (a) column-
maximum reflectivity, (b) 4 km vertical velocity retrieved from KABR-KFSD radial velocities, (c) 1 km ZDR (color; dB) and KDP (yellow contours; plotted at 1.75, 1.9, 
and 2.05 deg km −1). Vectors in panels (a)–(c) are the mean low-level (1–4 km) system-relative winds. Gray shading in panels (a)–(c) are the KABR-KFSD dual-doppler 
lobes, where dual-doppler winds cannot be retrieved. Panels in the lower panel (d)–(e) are similar to panels (a)–(b), but for the WRF simulation. Panel (f) shows the 
(color) rain diameter and (contour) rain concentration at logarithmic scale, both valid at the lowest model level.
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5.3.  Statistical Relationship Between Size Sorting Effect and Thermodynamic Characteristics

In this subsection, the latent heating and cooling terms from the WRF model were grouped into six essential 
microphysics components (deposition, freezing, condensation, sublimation, melting, and evaporation). To mini-
mize uncertainties in the vertical, ���� were compared to the vertically-integrated values of each microphysics 
component.

Figures  10a–10c show the bivariate distributions of three latent heating terms. Notice that the vertically-in-
tegrated latent heating and cooling terms in the y-axis in Figure 10 were displayed in logarithmic scales. The 
integrated condensation heating rates (𝐴𝐴 ∫ 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ; Figure 10c) were about half an order magnitude higher than the 
deposition rates (𝐴𝐴 ∫ 𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷 ; Figure 10a), and an order magnitude higher than the freezing rates (𝐴𝐴 ∫ 𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹 ; Figure 10b), 
respectively. The dominant role of condensation in the convective regions is consistent with simulations on 
two MCSs during the Midlatitude Continental Convective Clouds Experiment (MC3E; Jensen et al. [2018]) by 
Marinescu et al. (2016). The 𝐴𝐴 ∫ 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 and 𝐴𝐴 ∫ 𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷 were insensitive to separation distance 

(

����

)

 , with most size-sort-

Figure 8.  (a) Separation distances versus Echo Top Heights bivariate scatters and normalized frequency distribution for the observed 20 June 2015 mesoscale 
connective scale. (b) Simulated bivariate scatters and normalized frequency distribution of separation distances and echo top heights. (c) Simulated bivariate scatters 
and normalized frequency distribution of ice water path (IWP; blue scatters and contours) and liquid water path (LWP; orange scatters and contours). All frequency 
contours are at intervals of 0.11 from 0 to 0.99.
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ing objects having very similar integrated condensation and deposition rates 
aloft (Figures 10a and 10c). In contrast, the distance of 𝐴𝐴 ∫ 𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹 (Figure 10b) 
was similar to the ETH and IWP distributions (Figures 8b and 8c) in showing 
a nonlinear increase trend with separation distance (���� ).

The distributions of three latent cooling terms are shown in Figures 10d–10f. 
There were no noticeable trends in vertically-integrated sublimation (𝐴𝐴 ∫ 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆 ; 
Figure  10d) and evaporation (𝐴𝐴 ∫ 𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ; Figure  10f), suggesting that the net 
cooling from these two processes were insensitive to ���� . In contrast, there 
was a slight tendency for the integrated melting cooling (𝐴𝐴 ∫ 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ; Figure 10e) 
to become more negative, that is, stronger, with increased ���� . In particular, 
the shape of the 𝐴𝐴 ∫ 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 versus ���� distribution was similar to those of the 
ETH, IWC, and 𝐴𝐴 ∫ 𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹 but inverted.

The similarity between the 𝐴𝐴 ∫ 𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹 and 𝐴𝐴 ∫ 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 distributions to those of the 
ETH and IWP supports our finding in Section 4b on more active ice/mixed 
phase processes near large ���� objects. From Figure 10, we conclude that 
both the integrated freezing heating and melting cooling vary with ���� . On 
the other hand, the integrated latent heat release/absorption through conden-
sation, deposition, and evaporation are less sensitive to ���� .

Figure 9.  Probability density functions (PDFs) of the precipitation rates 
near size sorting objects with dWRF > 4.5 km (red solid line) and those near 
size sorting objects with dWRF < 4.5 km during the mesoscale connective 
scale mature phase (i.e., 0600–1000 UTC). Text box in the figure shows the 
percentage of samples with precipitation rates greater than 60 mm hr −1.

Figure 10.  Simulated bivariate distributions of separation distances and integrated microphysical heating/cooling terms. Panels in the upper row show the object-
collocated values (scatters) and the normalized frequency distributions of (a) integrated deposition heating, (b) integrated freezing heating, and (c) integrated 
condensation heating. Panels in the lower row are for the three integrated cooling terms, including (d) integrated sublimation cooling, (e) integrated melting cooling, 
and (f) integrated evaporation cooling. All frequency contours are at intervals of 0.11 from 0 to 0.99.
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5.4.  Statistical Differences in Thermodynamic Profiles

While bivariate distributions in Figure 10 elucidated some statistical relationships between local thermodynamics 
and separation distance (���� ), some ambiguities remain. Detailed information in the vertical is lost in the vertical 
integration. This produces some uncertainties in the interpretation of flat bivariate distributions in Figure 10.

Differences in statistical characteristics in the vertical are illustrated in this section with CFAD differences 
between objects of the two ETH-���� categories. The CFADs are calculated from the 9-km diameter circular area 
surrounding each object. The signs of the contours on the right-hand-side (RHS) of the CFAD difference figures 
(Figures 11–14) are critical to the interpretation herein. Since CFADs show how the probability distributions of a 
variable evolve in the vertical, positive (negative) difference to the right of Figures 11–14 means that the magni-
tudes of the variable will be larger near the large (smaller) ���� objects.

Since the CFAD difference figures are noisy, we used the Kolmogorov-Smirnov two-sample test (K-S test; 
Massey, 1951; Kolmogorov, 1933; Smirnov 1939) to identify the temperature levels where the CFAD differences 
are statistically significant. The K-S test is a non-parametric test that determines if two samples have the same 
underlying distribution. The null hypothesis that the two samples are taken from the same statistical distribution 
is rejected with p-values less than 0.05. The CFAD differences at different temperature levels were deemed not 
statistically significant if the K-S p-values were greater than 0.05. The same statistical method was adopted by 
Stechman et al. (2020b) to discuss the differences between airborne in-situ microphysical measurements gathered 
in the transition zones and stratiform regions of different PECAN MCSs.

Figure 11 shows the CFAD differences for the freezing and melting terms, which are nonlinearly related to ���� 
when vertically integrated (Figures 10b and 10e). The temperature ranges where the CFAD differences were 
statistically significant are between −32°C and −15°C for freezing, and between 2 and 20°C for melting. Within 
these temperature ranges, there were stronger freezing and cooling near the large ���� objects.

For other four latent heating or cooling terms (deposition heating, condensation heating, sublimation cooling, and 
evaporation cooling) in Figure 12, CFAD differences at different temperature ranges roughly offset each other 
when vertically integrated. The following differences were shown to be statistically significant:

1.	 �Stronger evaporation near the large ���� objects below the melting level (0°C; Figure 12d)
2.	 �Stronger sublimation near the large ���� objects from −25°C to −32°C (Figure 12c)
3.	 �Weaker deposition near the large ���� objects from –5°C to −18°C, and weaker condensation near the large 

���� objects within temperature range from 0 to 8°C (Figures 12a and 12b)

Figure 11.  The differences between the contoured frequency by altitude diagrams for dWRF > 4.5 km objects and objects with 
dWRF < 4.5 km objects and the two-sample K-S test p-values at different temperature levels. The variable analyzed in panel 
(a) is the freezing heating, in logarithmic scale, whereas the variable analyzed in panel (b) is the logarithmic scale melting 
cooling. Black dashed vertical lines in the K-S p-value panels represent the K-S significant threshold, that is, p-value less than 
0.05.
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5.5.  Implications of the Thermodynamic Variabilities on Kinematics

While ETH reveals correlation between convective kinematics and separation distance (���� ), two questions 
remained unanswered. First, are the deeper echoes near large ���� objects tied to updrafts at lower, middle, or 
upper levels? Second, is the correlation statistically significant? Vertical motion (w) in updrafts is determined by 
the buoyancy and pressure gradient force (Peters, 2016). While latent heat release during phase change can make 

Figure 12.  Similar to Figure 11, but for (a) deposition heating, (b) condensation heating, (c) sublimation cooling, and (d) 
evaporative cooling. All heating and cooling terms are in logarithmic scale.

Figure 13.  Similar to Figure 12, but for (a) updraft intensity and (b) downdraft intensity.
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the air parcel more buoyant, whether the increased buoyancy translates to stronger w is dependent upon updraft 
slopes (Parker, 2010) and widths (Morrison, 2016; Peters, 2016). Furthermore, factors like hydrometeor loading 
and entrainment can also impact w (e.g., Storer & van den Heever, 2013; Tao et al., 1995).

Figure 13 shows the difference between the updraft and downdraft CFADs of the two object categories. The large 
���� objects contain stronger updrafts beneath the melting level and at upper levels (Figure 13a). Downdrafts 
near large ���� objects are stronger than those near small ���� objects over all temperature values (Figure 13b). 
Similarly, Figure 14 shows the CFAD difference between the mixing ratio and concentration of graupel particles 
of two object categories, as well as the graupel DSD at the melting level for the two object categories.

Not all kinematic characteristics identified in Figure 13 pass the K-S significance threshold. A clear link between 
downdraft and ���� is confirmed as the p-values for downdrafts were mostly smaller than 0.05. In contrast, 
most updraft differences either only marginally satisfy or fail to pass the K-S significance threshold altogether 
(Figure 13a). One of the temperature ranges where the updraft differences passed the K-S threshold was between 
−20°C and −32°C, a temperature range that contained statistically significant freezing enhancement near large 
���� objects (Figure 11a).

5.6.  Spatial Similarities Between Graupel Sedimentation Patterns and Size Sorting Signature

This section discusses the composite spatial distributions of different variables near size-sorting objects. Spatial 
distributions corresponding to each object were first interpolated to the polar coordinate and rotated so that the 
prevalent wind directions were fixed easterly. Here, we compare Dmr and NTr at the lowest model level (Figures 15c 
and 15d), Dmg and NTg at 4 km (Figures 15a and 15b), and vertical velocity at 4 km (Figure 16a). These heights 
were chosen to reflect graupel DSD at the melting level (4 km) and rain DSD close to the surface. The composited 

Figure 14.  Similar to Figure 12, but for (a) graupel mixing ratio and (b) graupel number concentration in logarithmic scale. 
(c) Graupel drop size distribution at 0 °C for dWRF > 4.5 km objects (red solid line) and dWRF < 4.5 km objects (blue dashed 
line).
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Dmr was located in the upwind (i.e., right-hand) side of Figure 15d, whereas NTr was located in the downwind (i.e., 
left-hand) side of Figure 15e. A clear spatial separation between graupel diameter (Dmg; Figure 15a), and grau-
pel number concentration (NTg; Figure 15b) can be observed. Larger, but less numerous, graupel particles were 
distributed in the upwind side and were fairly close to the strongest updrafts (Figure 16a). In contrast, smaller, but 
more numerous, graupel were located in the downwind side of Figure 15b.

Figure 15.  Simulated mean spatial distributions of different variables at different heights in the 12 km diameter circles surrounding the midpoint between Dmr and NTr 
centroids, shown in polar coordinates. The variables analyzed in each panel is (a) graupel diameter at 4 km, (b) graupel number concentration at 4 km, (c) rain diameter 
at 0.25 km, and (d) rain number concentration at 0.25 km. The figures are constructed in a way so that the right hand side of each panel is the upwind side, whereas the 
left hand side of each panel is the downwind side.
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When we compare the graupel and rain DSD distributions in polar coordinates, it is clear that the Dmr and Dmg 
distributions were rather similar. On the other hand, NTr distribution maxima were located slightly upwind of the 
NTg maxima. Raindrops originated from melted graupel particles further downwind are small and may evaporate 
before reaching the surface, which could explain the slight spatial displacement between NTr and NTg maximum. 

Figure 16.  (a)–(b) Similar to Figure 15, but for (a) 4 km vertical velocity, and (b) 4 km relative humidity. (c) Vertical profile of 95th percentile rain mass generated 
from the cold pathway (solid lines) and the warm pathway (dashed lines) for objects with dWRF > 4.5 km (black) and objects with dWRF < 4.5 km (red). Celsius 
temperature is used as the y axis.
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In any case, Figure 15 provides the evidence on the role of graupel sedimentation in generating size-sorting signa-
tures. It also suggests that the production and fallout of a small quantity of large graupel particles was critical in 
spatially separating low-level KDP from ZDR.

6.  Discussion
Based on the “particle fountain” model (Yuter & Houze, 1995b; Zeng et al., 2001), we originally hypothesized 
that areas with larger (smaller) 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 and ���� at the lower levels would coincide with greater (less) ice DSD spatial 
separation aloft and stronger (weaker) updrafts. The statistical analyses suggested a more ambiguous relationship 
between size sorting and convective kinematics than originally hypothesized. While the ETH generally increases 
with separation distance (𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 and ���� ; Figures  3a,  8a, and  8b), the ETH-separation distances covariance is 
nonlinear. Thus, it would be difficult to use 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 or ���� independently to diagnose convective kinematics.

The separation distance is shown to be useful in diagnosing other convective properties. Statistical analysis of the 
PECAN MCSs revealed a clear tendency for more liquid water mass near the melting level for larger 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 objects 
(Figure 3b). The WRF simulation results support this observational finding by showing more integrated freezing 
and melting near larger ���� objects (Figures 10b and 10e). Since the CFAD difference of deposition (Figure 12a) 
was close to the CFAD difference of freezing (Figure 11a) between –5°C and −25°C, this enhanced freezing 
likely occurred at the expense of deposition. The CFAD difference also showed more vapor condensation above 
the melting level for larger ���� objects than that near smaller ���� objects (Figure 12b).

Based on these analyses, a microphysical framework was proposed to interpret these findings. For the large ���� 
objects.

1.	 �More raindrops and water vapor were lifted to upper levels with subfreezing temperatures. Increased availabil-
ity of supercooled liquid made it easier for graupel particles to grow by collecting supercooled liquid droplets 
(riming process; Figures 10b, 11a and 14a)

2.	 �The sedimentation of heavier graupel particles (Figures  14a and  14c) enhanced the cooling by melting 
(Figures 10e and 11b)

On the other hand, for the smaller ���� objects.

1.	 �Most raindrops and water vapor stayed at vertical levels with warm temperatures, which reduced freezing 
heating aloft (Figure 11a)

2.	 �Deposition became the dominant ice generation mechanism in subfreezing temperatures (Figures 10a, 10b 
and 12a)

3.	 �Ice hydrometeors formed aloft were lighter (Figure 14a) and less likely to fall to warmer temperatures and 
melt (Figures 11e, 12b and 14c)

These microphysical and thermodynamic processes have important implications on the dominant precipitation 
pathways associated with different size-sorting object categories. Figure 16c compares the 95-percentile vertical 
profiles of rain mass generated through the warm pathway (qWarm) and the cold pathway (qMelt) for large and small 
dWRF objects. Partition of rain mass through the warm and cold pathways follows this equation,

{

𝑞𝑞𝑊𝑊 𝑊𝑊𝑊𝑊𝑊𝑊 = 𝑞𝑞𝑟𝑟_𝑎𝑎𝑎𝑎 + 𝑞𝑞𝑟𝑟_𝑐𝑐𝑐𝑐 + 𝑞𝑞𝑟𝑟_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,� (3a)

{

𝑞𝑞𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑞𝑞𝑔𝑔_𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑞𝑞𝑠𝑠_𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑞𝑞𝑖𝑖_𝑚𝑚𝑚𝑚𝑚𝑚,� (3b)

where qWarm is the sum of rain mass generated through accretion (𝐴𝐴 𝐴𝐴𝑟𝑟_𝑎𝑎𝑎𝑎 ), autoconversion (𝐴𝐴 𝐴𝐴𝑟𝑟_𝑐𝑐𝑐𝑐 ), and vapor conden-
sation (𝐴𝐴 𝐴𝐴𝑟𝑟_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ), whereas qMelt is the sum of rain mass generated from melted graupel (𝐴𝐴 𝐴𝐴𝑔𝑔_𝑚𝑚𝑚𝑚𝑚𝑚 ), melted snow (𝐴𝐴 𝐴𝐴𝑠𝑠_𝑚𝑚𝑚𝑚𝑚𝑚 ), 
and melted ice (𝐴𝐴 𝐴𝐴𝑖𝑖_𝑚𝑚𝑚𝑚𝑚𝑚 ). More qMelt was produced near the large ���� objects, whereas more qWarm was produced 
near the small ���� objects, which agrees with the proposed microphysical framework. The CFAD differ-
ences for the graupel number concentration (Figure 14b) and snow concentration (not shown) suggest that the 
enhanced qMelt was largely related to increased graupel fallout to warmer temperatures. Based on these findings, 
it was concluded that ���� could potentially be used to diagnose the amount of rain mass generated via the cold  
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pathway relative to that generated via the warm pathway. A schematic diagram of the microphysical processes 
leading to different dobs/dWRF is given in Figure 17.

Finally, the CFAD differences in evaporative and sublimation cooling magnitudes between larger dWRF objects 
and smaller objects (Figures 12c and 12d) indicate a greater likelihood for larger dWRF objects to have stronger 
evaporative and sublimation cooling at or slightly beneath the melting level. A possible explanation for this is 
local enhancements in rear inflow jets (RIJs; Yang and Houze, 1995; Grim et al., 2009). Since graupel particles 
experienced more advection in stronger updrafts, graupel particles formed near large 𝐴𝐴 𝐴𝐴𝑊𝑊𝑊𝑊𝑊𝑊 objects were more 
likely to sublimate in the drier air behind updrafts (Figure 16b). While there were no in-situ measurements within 
the convective region of the 20 June MCS, a spiral profile taken in its transition zone did show signs of active 
sublimation near a strong RIJ (Stechman et al., 2020a; see their Figure 22).

7.  Conclusions
This study evaluates the feasibility of using separation distance to infer convective variabilities in nocturnal MCSs 
during the PECAN field campaign. An object-based method was used to identify a large quantity of size-sorting 
signatures in the convective regions of 10 nocturnal MCSs. Local kinematic, microphysical, and thermodynamic 
characteristics were then extracted for each object and compared to its separation distance.

We have listed three scientific questions related to hydrometeor size sorting in the Introduction Section. We now 
examine if these questions are addressed with the analysis presented. Bivariate statistics show a positive correla-
tion between separation distance and echo-top height (ETH; Figures 3a, 8a, and 8b). Although Figure 13a shows a 
positive updraft CFAD difference between large 𝐴𝐴 𝐴𝐴𝑊𝑊𝑊𝑊𝑊𝑊 objects and smaller 𝐴𝐴 𝐴𝐴𝑊𝑊𝑊𝑊𝑊𝑊 objects, the statistical difference 
is mostly statistically insignificant. Thus, we conclude that size-sorting objects' magnitudes could have positive 
but statistically insignificant correlations to the convective updraft intensities.

Figure 17.  Schematic diagram of the microphysical processes associated with (a–c) larger low-level separation distances, and (d–f) smaller low-level separation 
distances proposed in Section 6. Black arrows in the diagram represent the system-relative flow pattern. Red contours of line-averaged reflectivity are used to show how 
the fallout location of graupel (blue circles) differs relative to the mesoscale connective scale.
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Statistically significant differences in thermodynamics and the precipitation pathways were found for objects 
with different separation distances (���� ; Figures 10, 11, 12 and 16c). Similarities in the nonlinear correlations 
between the ETH, IWP, integrated freezing heating and integrated melting cooling (Figures 8b, 8c, 10b and 10e) 
suggest that changes in convection depth with separation distance can mostly be attributed to the latent heat 
released through the riming process.

Taking all results presented in Section 5 into account, we find that separation distance can potentially be used to 
diagnose contributions from riming heating and melting cooling to the overall convective thermodynamic struc-
ture (Figures 10b, 10e and 11). Additionally, separation distance may reveal some information about whether 
convective heating above the melting level is more dominated by deposition or riming (Figures 11a and 12a). 
More riming growth of graupel particles near large ���� objects caused the local dominant precipitation pathway 
to shift more toward the cold pathway (Figure 16c). Statistical analysis of precipitation characteristics (Figures 4 
and 9) suggests that increased rain mass generated through the cold pathway near the large ���� objects contrib-
uted to the greater likelihood of intense precipitation. For the smaller ���� objects, reduced rain production from 
the cold pathway was partially compensated by warm rain production.

In short, separation distance was shown to be related to different convective variabilities. The most critical factor 
leading to this correlation is the production and subsequent fallout of large graupel particles. Convective areas 
would have larger separation distances if there were larger graupel particles in these areas and fell in close vicinity 
to the updrafts. The correlation between separation distance and graupel growth also indicates that the separation 
distance can be used to infer the thermodynamic characteristics near and above the melting level.

This study builds upon previous modeling studies that examined different factors leading to the observed pola-
rimetric signatures (e.g., Dawson et al., 2014; Ilotoviz et al., 2018; Kumjian et al., 2014; Snyder et al., 2017). 
The presented results provided practical guidance on various variabilities near size-sorting signatures of different 
magnitudes. From a modeling perspective, our results suggest that separation distance can be used to evaluate 
different microphysical assumptions used in models. For example, the temporal evolution of separation distance 
can be used to quantify how microphysical assumptions impact the spatial variabilities of drop-size distributions 
of ice hydrometeors aloft and how these DSD variabilities affect the MCS dynamics.

Finally, while our results are based upon statistical analyses on a large dataset from 10 MCSs during PECAN 
experiments, uncertainties still remain as to the general applicability of our conclusions, especially for those 
related to the precipitation pathways. The cold pathway was more important than the warm pathway in generating 
intense precipitation in MCSs during PECAN. However, the warm pathway may be more important in producing 
rainfall for MCSs occurring in other environments. A climatological analysis of the size-sorting signatures in 
MCSs over a wide range of geographical locations and seasons is needed to verify our conclusions. We also need 
to indicate that our results are mostly based on the LLTS 20 June MCS. Discriminating size sorting magnitudes 
with MCS organizational structure is left to future work. Another limitation of our study is that we have not 
discussed the interaction between convective drafts and ambient environments. More work is needed to clarify the 
kinematic variability, possibly through re-classifying size-sorting objects based on updraft width/slope or envi-
ronmental shear/instability magnitudes. The other limitation is the instantaneous nature of the existing algorithm, 
which could bias our results against slow-occurring processes. It is also difficult to use the current algorithm to 
investigate the linkage between separation distances and the life cycle of individual convective elements. Future 
work should address these limitations by using convection-tracking technique to trace the temporal evolution of 
different size-sorting objects.

Appendix A
Are the statistical relationships sensitive to model horizontal resolution?

It is possible that the coarser resolution used in this study (a horizontal grid size of 3 km) might not properly 
represent the size-sorting feature, which is fundamentally a convective-scale process. However, it is evident in 
Figure A1 that the simulation with a grid size of 3 km can still replicate the net effect of the size-sorting phenom-
enon on spatial distribution and local variability of hydrometeors.
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Figure A1.  Mean spatial distributions of (a) 4 km graupel diameter, (b) 4 km graupel number concentration surrounding size sorting objects for the simulation with 
an extra inner domain of 1-km grid spacing. (c) Bivariate scatter plots and normalized frequency distributions between separation distances and (c) liquid and ice water 
path for the 1-km simulation.

Figure A1 shows the mean spatial distributions of Dmg and NTg at 4-km height from the simulation which has 
the same model configuration in Table 2 except with 1-km horizontal grid size. Both the coarse and fine grid 
resolution experiments show a similar spatial trend where Dmg (NTg) concentrates in the upwind or eastern (down-
wind or western) side of low-level size sorting objects (see Figures 15a, 15b and Figure A1a,A1b). The bivariate 
distribution between separation distance and ice water path (Figure A1c) continues to increase nonlinearly with 
dWRF in finer grid resolution. Based on these results, we conclude that even if individual convective drafts could 
not be well resolved by the simulation with 3-km grid spacing, it still captured the net effect of several drafts in 
close proximity.
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Data Availability Statement
The radar observations analyzed in this study can be obtained from the archival website (https://www.ncei.noaa.
gov/access/search/data-search/weather-radar-level-ii) hosted by the National Centers for Environmental Infor-
mation (NCEI) [Data set]. The WRF model is available online at https://github.com/NCAR/WRFV3. [Data set].
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