

Taiwan-Area Heavy rain Observation and Prediction Experiment (TAHOPE)

Ming-Jen Yang 楊明仁¹, Tien-Chiang Yeh 葉天降²,

Ching-Yuang Huang 黃清勇³, Pay-Liam Lin 林沛練³, Po-Hsiung Lin 林博雄¹,

Cheng-Shang Lee 李清勝¹, Chung-Chieh Wang 王重傑⁴, Ching-Hwang Liu 劉清煌⁵,

Pao-Liang Chang 張保亮², Jou-Ping Hou 侯昭平⁶, Kao-Shen Chung 鍾高陞³,

Wei-Yu Chang 張偉裕³, Ping-Fang Lin 林品芳²

¹National Taiwan University, ²Central Weather Bureau, ³National Central University, ⁴National Taiwan Normal University, ⁵Chinese Culture University,

⁶National Defense University

2020 International Workshop on Extreme Rainfall and PRECIP Planning Workshop

at CSU on 2-3 March 2020

Background

- 2014/7 : MOST science team led by Minister Dr. San-Cheng Chang visited NSF and had intense discussion on mutual cooperation. One of the mutual interests from the meeting was the severe weather and extreme rainfall, thus scientists from both countries decided to promote further cooperation.
- 2015/5: 1st Taiwan-USA Severe Weather Workshop at Taipei
- 2016/6: 2nd Taiwan-USA Severe Weather Workshop at Hawaii
- 2017/6: PRECIP 2020 workshop at Colorado State University
- 2017/9: First TAHOPE Planning meeting at TTFRI
- 2017/10/16: First Taiwan-USA working meeting
- 2017/10/18 : The 1st Planning Meeting for the Joint Projects (with scientists from Taiwan, USA, Japan, and Korea)
- 2017/9 12: 6 working meetings at TTFRI, and 1 meeting at CWB
- 2017/12/14-15: Second Taiwan-USA working meeting
- 2018/3: Radar site survey and 3rd Taiwan-USA working meeting
- 2018/5: 4th Taiwan-USA working meeting
- 2018/6: Taiwan-USA-Japan joint meeting at AOGS
- 2018/10: Prof. Ming-Jen Yang served as the TAHOPE lead PI

Dr. Bill Kuo's briefing to President Tsai on TAHOPE/PRECIP 2020

Photo from Cidny Ramirez (Albany/NTU)

TAMEX observations of convection (Chen et al. 1989; Trier et al. 1990; Ray et al. 1991; Lin et al. 1992; Chen and Chou 1993; Chen and Li 1995; Li et al. 1997; others) "Meivu front"

Weather

radars

TAMEX Radar observations along "Meiyu" front (Trier et al. 1990; Lin et al. 1990, 1992; Wang et al. 1990; Chen and Chou 1993; Chen and Li 1995; Li et al. 1997; others)

CP-4

TAMEX Radar observations of convection along "Meiyu" front (Trier et al. 1990; Lin et al. 1990, 1992; Wang et al. 1990; Chen and Chou 1993; Chen and Li 1995; Li et al. 1997; others)

(Li, Chen and Lee 1997)

Back-building convection along Mei-Yu front

Barrier jets frequently associated with heavy rainfall; orographic effects (Chen et al. 1991; Akaeda et al. 1995; Chen and Chen 1995; Chen et al. 1994; Chen et al. 1997; Li and Chen 1998)

- Air mass modification by strong SST gradient in northern SCS during Meiyu season (Trier et al. 1990)
- Surface fluxes moderate the T gradient across front as it moves southward along west coast

Southwest Monsoon Experiment

Terrain-influenced Monsoon Rainfall Experiment

15 May – 30 June 2008

Central Weather Bureau Copyright Reserved

Scientific Objectives

- Terrain effect on the flow and MCSs
- MCS dynamics, microphysics, and predictability
- Mesoscale data assimilation/ QPF
- Convective initiation/diurnal cycle/boundary layer processes

Participants

- Field phase: US-Taiwan
- Post-field phase activities/ workshops: Korea, Japan, Viet Nam, PRC

Large-scale Sounding Network for TIMREX

Observations of shallow fronts (Davis et al. 2012)

- Despite shallowness and weak T gradient, impact on convection is significant due to moist, unstable conditions
- T contrast reinforced by cool downdrafts over land
- Analogous to coastal fronts at higher latitudes

Extreme rainfall 14-16 June 2008 (Xu et al. 2012)

- Convective cell triggering by low-level jet impinging on shallow cold pool
- Cold pool reinforced by continuous precipitation
- Cold pool trapped by terrain
- Virtual extension of island barrier to the southwest

Red: unstable air Blue: cold pool Wind barbs: winds from soundings boundary: between the cold pool and upstream flows

(Xu et al. 2012)

MCS Conceptual Model

Houze et al. (1989)

Houze (2014): Cloud Dynamics textbook

Multicell characteristics in a squall-line MCS as a manifestation of vertically-trapped gravity waves

Topics: 1) interplay between convective GW and mountain GW

- 2) How does GWs affect precipitation?
- 3) interaction between squall line and Island terrain

See Yang and Houze (1995; MWR) for GW generation and trapping mechanisms.

FIGURE 9.41 Schematic model of the gravity-wave structure of a simulated multicellular MCS at a mature stage of development. Updrafts $> 1 \text{ m s}^{-1}$ are heavily shaded. Downdrafts $< -1 \text{ m s}^{-1}$ are lightly shaded. Bold line is the cold pool outline defined by the -1 K potential temperature perturbation. Cloud outline is for the 0.5 g kg⁻¹ contour of nonprecipitating hydrometeor mixing ratio. L and H indicate centers of low and high perturbation pressure. *From Yang and Houze (1995). Republished with permission of the American Meteorological Society.*

Houze (2014): Cloud Dynamics

Include the Terrain Effect in the RKW theory

 mature-stage MCS before interacting with mountain

- The leading edge is Intensified by terrain
- Convection is suppressed on the lee side

Pan and Yang (2020; AOGS conference)

VHT, MCV, and Cyclogenesis

Houze et al. (2009)

Houze (2014): Cloud Dynamics textbook

RADAR sees the eyewalls and rainbands in a Tropical Cyclone

Willoughby (1988) Houze (2010) Houze (2014): Cloud Dynamics textbook

Aircraft data collected in Hurricane Rita (2005)

Vertical Cross Section of Vortical Hot Tower (VHT)

Oceanic VHT within

⇒ From this cross section, the VHT of Fanapi (2010) in land has weaker maximum updraft, narrower diameter, and shallower depth, compared with the VHT over open ocean.

Liou, Y.-C. T.-C. C. Wang^{*}, and P.-Y. Huang, 2016: The Inland Eyewall Reintensification of Typhoon Fanapi (2010) Documented from an Observational Perspective Using Multiple-Doppler Radar and Surface Measurements. *Mon. Wea. Rev.*, **144**, 241–261.

Yang, M.-J.*, Y.-C. Wu, and Y.-C. Liou, 2018: The study of inland eyewall reconstruction of Typhoon Fanapi (2010) using numerical experiments and vorticity budget analyses. *J. Geophys. Res. Atmos.*, **123**, 9604–9623. https://doi.org/10.1029/2018JD028281.

Typhoon Fanapi (2010)'s Eyewall Reformation

Nearly Perfect PE for Typhoon Morakot (2009)

(b) Water Vapor Budget

See Huang et al. (2014) for details of water budget and PE calculations.

Huang, H.-L., M.-J. Yang*, and C.-H. Sui, 2014: Water budget and precipitation efficiency of Typhoon Morakot (2009). J. Atmos. Sci., 71, 112–129.

Topic: PEs for west-PAC typhoons in 2020?

	70					
Topics: Moisture Budget Hydrometeor Budget PEs for different MCSs	U&V+10 %	—	15%	15%	1<1%	1<5%
	U&V- 10%	—	↓5%	↓5%	↓5%	↓5%
	RH-10%	↓5%	↓15%	↓20%	↓40%	↓40%

Reference: Wu, Y.-C., M.-J. Yang*, and P.-H. Lin, 2020: Evolution of water budget and precipitation efficiency of mesoscale convective systems over the South China Sea. *Terr., Atmos., and Oceanic Sci.*, in press. DOI: 10.3319/TAO.2019.07.17.01

Schematic diagram of the interactions between sea breeze, cold pool and coastal terrain for the development of afternoon thunderstorm over Taipei basin.

Reference: Miao, J.-E., and M.-J. Yang*, 2020: A modeling study of the severe afternoon thunderstorm event at Taipei on 14 June 2015: The roles of sea breeze, microphysics, and terrain. *J. Meteor. Soc. Japan*, **98.** https://doi.org/10.2151/jmsj.2020-008.

Hovmöller diagrams along the N-S sea breeze from Danshui

=> sea-breeze propagation speed ~4.6 m/s, cold pool propagation speed ~ 6.5 m/s => The MUCAPE is highly related to the meridional wind associated with sea-breeze circulation!

Reference: Miao, J.-E., and M.-J. Yang^{*}, 2020: A modeling study of the severe afternoon thunderstorm event at Taipei on 14 June 2015: The roles of sea breeze, microphysics, and terrain. *J. Meteor. Soc. Japan*, **98.** https://doi.org/10.2151/jmsj.2020-008.

Taiwan-Area Heavy-rainfall Prediction Experiment (TAHPEX)

PI: Chung-Chieh Wang

Department of Earth Sciences, National Taiwan Normal University, Taipei, Taiwan

Co-PI: Jing-Shan Hong (CWB), Fang-Ching Chien (NTNU), and Ching-Yuang Huang (NCU)

Participants: Ming-Jen Yang (NTU), Pay-Liam Lin (NCU), Rosimar Rios-Berrios (NCAR), Chian-Yi Liu (NCU), Hsi-Chyi Yeh (Aletheia Univ.), Hsiao-Chung Tsai (TKU), Guo-Chen Leu (CWB), Chin-Tzu Fong (CWB), Treng-Shi Huang (CWB), Ling-Feng Hsiao (CWB), Chien-Her Chen (CWB), Shu-Ya Chen (NCU), Guo-Yuan Lien (CWB), and Cheng-Chin Liu (CWB)

Project Goal and Major Scientific Issues of TAHPEX

Overall Project Goal:

To improve understanding of *physical processes* and *predictability*, and the *QPF skills* for extreme/heavy rainfall in and near Taiwan

Phenomena/Systems near Taiwan:

- Mei-yu and southwesterly Monsoon
- **Typhoon**/tropical cyclone

Major Scientific Issues:

- Convective-scale processes and cross-scale interactions
- Topographic/diurnal effects (including PBL processes)
- QPF/QPE and (mesoscale) predictability
- Cloud microphysics

Primary Research Tool: Cloud-Resolving Models (CRMs)

Two components: Science (basic) and applications (applied) Individual PIs (~15)
Multi-model ensemble prediction system

Focus and Progress of TAHPEX General Project before TAHOPE '20

Probability information (24-h rain) by a single CRM (2.5-km CReSS, every 6 h):

- Build a multi-CRM time-lagged ensemble prediction system
- Minor emphases: by individual PIs
 - More thorough studies of *past cases* (e.g., those in 2008, 2012, 2017)
 - Understanding large-scale background and processes
 - Understanding convective- and storm-scale processes

Expected Benefits of the TAHPEX ensemble prediction system

Time-lagged ensemble by multiple CRMs is the best approach

- Resources likely too big for any single agency/group at present time
- Multiple CRMs provide a larger (better) spread to cover the true scenario, and each one may perform better under different conditions

For TAHOPE field experiment (PI: Prof. MJ Yang, need real-time):

- To support the science team to determine IOPs and target regions
- Probability and ensemble-based sensitivity analysis (ESA) available

For future study in the TAHPEX project (beyond summer of 2020):

- Also good for ensemble-based simulation of observed events
- Study scale-interaction processes and cloud microphysics in a more complete way, important for future model improvement
- Study the predictability issues from an ensemble approach with a large enough size
- Coordinated studies of processes covering a fuller spectrum (or across a wider range of scales) among different participating PIs

Benefits from intensive observations of TAHOPE campaign

Detailed structure/evolution of heavy rainfall systems:

- Mei-yu front, MCS, TC rainband, convective storms, isolated/local convection
- Including TC observations
- Focused more in northern Taiwan, in contrast to SoWMEX

Given Set The Form of the angle of the set of the set

- Structure/evolution of heavyrainfall systems (scale interaction)
- Cloud microphysics (for future model improvement)

For data assimilation:

TAHOPE/PRECIP2020

- *Convective scale data assimilation for improved initial fields*
- Evaluate importance and best strategy/location for key observations (through OSSE studies)

Cloud-resolving Time-lagged Ensemble Prediction System

A total of 13 members, from universities, CWB, and research sector
 Members and status during dry run (1-14 Jun 2019):

Mem.	Model	PI in charge	Δx	Status	Freq.	Range	Plot	FTP
M01	NTNU CReSS	CC Wang	2.5 km	0	2/d	120 h	Υ	Υ
M02	NTNU WRF	FC Chien	3 km	Υ	2/d	120 h	Υ	Υ
M03	NTU WRF	MJ Yang	3 km	Υ	1/d (00)	120 h	Υ	Υ
M04	CWB WRF-D	JS Hong	3 km	0	4/d	120 h	Υ	
M05	CWB TWRF	JS Hong	3 km	0	4/d	120 h	Υ	
M06	NCU WRF	PL Lin	3 km	Υ	2/d	120 h	Υ	Υ
M07	NCU MPAS	CY Huang	~3 km	Ν			Ν	Ν
M08	CReSS-NHOES	CC Wang	2.5 km	N			Ν	Ν
M09	NCAR MPAS	R Rios-Berrios	~3 km	Υ	1/d (12)	72 h	Υ	Υ
M10	CWB FV3GFS	LF Hsiao	~4.8 km	O *	2/d	120 h	Υ	
M11	NTNU CReSS	CC Wang	1 km	Υ	1/d (12)	96 h	Υ	Υ
M12	CWB WRF	JS Hong	1 km	0	1/d (12)	24 h	Υ	
M13	CWB SUM	CH Chen	1 km	0	1/d (12)	120 h	Υ	

PS:

- 1. Run status keys: O: operational, O*: slightly delayed, Y/N: yes/no.
- 2. Parenthesis: initial time in UTC.

Brief model specification of TAHPEX members:

Mem.	Model	Δx	Levels	Nests	Cou	pled	IC/BC	DA	CMP (M)	CPS	PBL
M01	CReSS v3.4.2	2.5 km	40	Ν	Ν	R	NCEP-GFS/FV3	Ν	Cold rain (1.5)	Ν	D80
M02	WRF v3.9.1	3 km	45	Y (3)	Ν	R	NCEP-GFS/FV3	Ν	Goddard	Tiedtke	YSU
M03	WRF v3.9.0	3 km	41	Y (3)	Ν	R	NCEP-GFS/FV3	Ν	WDM6 (2)	K-F	YSU
M04	CWB WRF-D	3 km	52	Y (2)	Ν	R	NCEP-GFS/FV3	Y	Goddard	K-F	YSU
M05	CWB TWRF	3 km	52	Y (2)	Ν	R	NCEP-GFS/FV3	Υ	Goddard	K-F	YSU
M06	WRF v.3.9.1	3 km	45?	Y (3)	Ν	R	NCEP-GFS/FV3	Ν	Goddard	K-F	MYNN
M07	NCU MPAS	3 km	55	VR	Ν	G	NCEP-GFS/FV3	Ν	WSM6 (1)	Tiedtke	YSU
M08	CReSS-NHOES	2.5 km	40	Ν	Y	R	NCEP-GFS/FV3	Ν	Cold rain (1.5)	Ν	D80
M09	MPAS v6.3	3 km	55	VR	Ν	G	NCEP-GFS/FV3	Ν	WSM6 (1)	Tiedtke	YSU
M10	CWB FV3GFS	~4.8 km	63	Y (2)	Ν	G	NCEP-GFS/FV3	N?	GFDL	SAS	TKE-EDMF
M11	NTNU CReSS	1 km	45	Ν	Ν	R	NCEP-GFS/FV3	Ν	Cold rain (1.5)	Ν	D80
M12	CWB WRF	1 km	52	Y (3)	Ν	R	NCEP-GFS/FV3	Υ	Goddard	K-F	YSU
M13	CWB SUM	1 km	42	Y (2?)	Ν	G	NCEP-GFS/FV3	Y	WSM3 (1)	Ν	MRF
PS:	PS: Regional/Global										

- IC/BC: initial/boundary condition, DA: data assimilation, CMP (M): cloud microphysics (moments), CPS: cumulus parameterization scheme, PBL: planetary boundary layer, VR: variable resolution, SUM: Spectral Unified Model (CWB GFS+MSM, MSM: Mesoscale Spectral Model).
- 2. For CMP: WDM6: WRF double-moment 6 class, WSM6: WRF single-moment 6 class, etc.
- 3. For CPS: K-F: Kain-Fritsch; for PBL: D80: Deardorff (1980), MRF: medium-range forecast.

Current status for HAHOPE 2020 (updated: 26 Feb 2020):

Mem.	Model	PI in charge	Δx	Status	Freq.	Range	Plot	ESA	Ensemble
M01	NTNU CReSS	CC Wang	2.5 km	0	4/d	120 h	Υ	Y	based sensitivity
M02	NTNU WRF	FC Chien	3 km	Υ	4/d	96-120 h	Υ	Y	analysis
M03	NTU WRF	MJ Yang	3 km	Υ	≥2/d	96-120 h	Υ	Υ	
M04	CWB WRF-D	JS Hong	3 km	0	4/d	120 h	Υ	Y	
M05	CWB TWRF	JS Hong	3 km	0	4/d	120 h	Υ	Y	
M06	NCU WRF	PL Lin	3 km	Υ	4/d	96-120 h	Υ	Υ	
M07	NCU MPAS	CY Huang	3 km	Υ	1/d	96-120 h	Υ	Υ	
M08	CReSS-NHOES	CC Wang	2.5 km	Υ	2/d	96-120 h	Υ	γ	
M09	NCAR MPAS	R Rios-Berrios	3 km	Υ	1/d (12)	72 h?	Υ	Y	
M10	CWB FV3GFS	LF Hsiao	~4.8 km	O *	2/d	120 h	Υ	Y	
M11	NTNU CReSS	CC Wang	1 km	Υ	2/d	72-96 h	Y	Ν	Fine
M12	CWB WRF	JS Hong	1 km	0	1/d (12)	24 h	Y	Ν	domain too
M13	CWB SUM	CH Chen	1 km	0	1/d (12)	102 h	Y	Ν	small
PS:								*****	

- 1. Run status keys: O: operational, O*: slightly delayed, Y/N: yes/no, Y: yes as planned.
- 2. Parenthesis: initial time in UTC.
- 3. ESA: ensemble-based sensitivity analysis.

Design of domain for TAHPEX WRF members from universities:

CWB domain

TAHPEX domain

CReSS domain

TAHPEX domain-03

Three casts selected for testing of products:

Typhoon: TY Nesat 2017 (1200 UTC 25 Jul to 1200 UTC 30 Jul 2017)

Meiyu: 2-3 Jun 2017 (0000 UTC 31 May to 0000 UTC 3 Jun 2017)

Dry-run case (0000 UTC 9 Jun to 0000 UTC 15 Jun 2019)

□ An Example of ESA products: 2-3 Jun 2017 case

Expected Achievements

- Complete the first field experiment on typhoons affecting Taiwan with integrated new radar network and airborne radar for rainfall and structure changes.
- Complete **the first field experiments** with unmanned and manned aircraft measurements for **both Mei-yu fronts and typhoons.**
- Verify hypotheses of various **rainfall mechanisms/enhancements** in different systems and improvement on state-of-the-art modeling skill of severe rainfall.
- Improve operational **QPE and QPF** and forecast skill of **violent winds** in the Mei-yu systems and typhoons for decision making.
- Provide cross validations among a variety of observations and their error characteristics for **data assimilation** purpose.
- Transfer the research outcome into government operational agencies like Central Weather Bureau, and Water Resource Agency to benefit the society.
- Publish scientific journal articles and books
- Train future talents (students & postdocs) in universities and government agencies
- Promote the visibility of Taiwan in international scientific communities.

