A modeling study of the severe afternoon thunderstorm event at Taipei on 14 June 2015: The roles of sea breeze, microphysics, and terrain



Ming-Jen Yang, Jyong-En Miao Dept. of Atmospheric Sciences National Taiwan University

Seminar at DAES, Albany University 14 January 2019

### Weak Synoptic Forcing



CWB Synoptic Analysis

### Morning sounding

Banchiao sounding 08 LST 14 June 2015



CAPE = 1076 J/kg at 08 LST => weak to moderate thermodynamic instability





=> Both observation and model simulation show that rainfall rate increases significantly after cell merger!

### **Model Configuration**

- Version 3.4 of WRF ARW
- two-way interactive 4 nested domains: 13.5, 4.5, 1.5, 0.5 km
- 55 vertical levels (8 layers within PBL)
- microphysics scheme: WDM6
- Kain-Fritsch cumulus (only D1)
- Dudhia shortwave radiation
- RRTM longwave radiation
- Noah land surface model
- YSU PBL
- Landuse data: MODIS
- ECMWF ERA-Interim 0.75°x0.75°
- initial time: 6/13 12Z
- forecast hour: 24hr 🔏 at t = 15hr)



# Comparison between the simulated and observed soundings



Banchiao sounding at 0800 LST OBS WRF-CNTL

CAPE comparison: => OBS: 1076 J/kg CNTL: 885 J/kg

Both show a mid-level dry layer.

Both show the southwesterly between 850 hPa and 400 hPa, and the westerly at upper level.



Miao and Yang (2019; 大氣科學)

=> Low-level convergence produced by sea-breeze circulation and thunderstorm cold-air outflow at Taipei City



### Water vapor comparison













N-S sea-breeze box from Danshui (50 km by 10 km): Danshui  $\rightarrow$  Shilin  $\rightarrow$  Chungho

NE-SW sea-breeze box from Keelung (40 km by 10 km): Keelung  $\rightarrow$  Shizi  $\rightarrow$  Wenshan



#### CAPE evolution 0800 LST 1100 LST 1200 LST

0800 LST: CAPE = 885 J/kg

1100 LST: CAPE = 1833 J/kg Well-mixed PBL Wind turns to northerly below 1km

1200 LST: CAPE = 3268 J/kg Dewpoint increases Wind turns to northerly below 1.3 km.

#### Vertical Cross Section along the Sea Breeze from Danshui

Shaded: meridional wind Contour: equivalent potential temperature



#### Vertical Cross Section along the Sea Breeze from Danshui

Shaded: radar reflectivity Contour: vertical velocity = { -1, -0.5, 1, 2, 4, 8 } m/s



#### Vertical Cross Section along the Sea Breeze from Keelung

Shaded: plane-parallel wind Contour: equivalent potential temperature



#### Vertical Cross Section along the Sea Breeze from Keelung

Shaded: radar reflectivity Contour: vertical velocity = { -1, -0.5, 1, 2, 4, 8 } m/s





Hovmöller diagrams along the N-S sea breeze from Danshui

=> sea-breeze propagation speed ~4.6 m/s cold pool propagation speed ~ 6.5 m/s

=> The MUCAPE is highly related to the meridional wind associated with sea-breeze circulation!

#### **LFC Height**



Hovmöller diagrams along the sea-breeze from Danshui: level of free convection & cold-pool height (contour)@ {200, 500, 700, 900,1100 m}

- $\Rightarrow$  LFC is higher than cold-pool height
- $\Rightarrow$  air parcels lifted above the cold pool can easily reach their LFCs and release their CAPEs



Hovmöller diagrams along the NE-SW sea-breeze from Keelung

=> The MUCAPE is also highly related to the sea-breeze speed, but the MUCAPE along Keelung sea breeze is weaker than that along the Danshui sea breeze by ~200 J/kg.



Hovmöller diagrams along the NE-SW sea-breeze from Keelung: LFC height & cold-pool height (contour) @ {200, 500, 700, 900 m}

 $\Rightarrow$  The relationship between LFC and cold-pool height is not so clear, particular for NE sea breeze from Keelung

### **Sensitivity Experiments**

| Run  | Comments                                                 |
|------|----------------------------------------------------------|
| CNTL | WRF run with full physics                                |
| NEVP | no evaporative cooling of rainwater after 08 LST 14 June |
| NMLT | no melting cooling of graupel after 08 LST 14 June       |
| NDAT | Same as CNTL except for the removal of Mount Datun       |



#### 1200-1430LST accumulated rainfall





**NMLT** 

**NEVP** 













**Taipei Basin Statistics** 





**Taipei Basin Statistics** 

### Q: What is the effect of Mount Datun on increasing local convergence and enhancing convection within Taipei Basin?



CNTL run



1200-1430LST accumulated rainfall for NDAT experiment



### **Conclusions** I

- The sea-breeze circulation and afternoon thunderstorm system (with peak rainfall rate of 131 mm/h) were reproduced by the **0.5-km** WRF simulation reasonably well.
- Sea-breeze circulation was responsible for convection initiation at foothill, and mountain-valley circulation was for convection initiated at mountain peak, respectively.
- Convective available potential energy (CAPE) was increased by 800 to 3200 J/kg with abundant moisture transport by the sea breeze from 08 to 12 LST, fueling large thermodynamic instability for the development of afternoon thunderstorm.

### **Conclusions II**

- The strong convergence between sea breeze and precipitation-induced cold-air outflow trigger further development of intense convection, resulting in heavy rainfall and urban flooding inside Taipei City.
- Evaporative cooling of raindrop played an major role in the propagation and intensification of cold-air outflow, while melting cooling of graupel played a minor role.
- Local topography of Mount Datun produced the channel effect along Danshui River Valley, intensified sea-breeze circulation and transported more moisture, increased CAPE and resulted in stronger thunderstorm system with heavier rainfall inside Taipei City.

### Thank you for listening





圖 1 2015 年 6 月 14 日台北盆地發生豪雨型午後雷暴之雨量空間分布,橘色點代表 3 小時累積雨量超過 100 mm 測站,黃色點則代表 3 小時累積雨量未達到 100 mm 之測站。



圖 4 2015 年 6 月 14 日北台灣區域 QPESUMS 合成雷達回波圖。 Jou at al. (2016; 大氣科學)



圖 5 2015 年 6 月 14 日五分山雷達觀測回波 0.5 PPI,時間分別為: (a) 1411 (b) 1422 (c) 1435 (d) 1446 (e) 1452 (f) 1457 (g) 1503 (h) 1509 以及(i) 1527 LST。



圖 6 沿圖 5 之 C1 五分山雷達回波垂直剖面: (a) 1417 (b) 1435 (c) 1441 (d) 1452 (e) 1503 以及 (f) 1521 LST。

Jou at al. (2016; 大氣科學)



圖 7 2015 年 6 月 14 日台北市區地面測站 1200 LST 溫度場和風場(a),以及水平輻散輻合場(b); (c)和(d)與(a)和 (b)同,但為 1400 LST。



圖 12 2015 年 6 月 14 日台北市區(a) 1200-1400 LST 兩小時累積降雨, (b) 1400 LST 氣溫和風場分布, 粗實線為主 要輻合區。





圖 8 2015 年 6 月 14 日五分山雷達(+位置所在) 0.5 度 PPI 都卜勒風場(a)1435LST 和(b)1452LST。紅實線分別 代表離開雷達 20, 30, 40 公里距離,暖色系代表遠離雷達,冷色系代表接近雷達風場。

Jou at al. (2016; 大氣科學)



圖 9 2015 年 6 月 14 日五分山雷達觀測方位角 2580 都卜勒風場分布, (a) 1435LST 和(b) 1452LST。雷大位置在右下角, 三角點代表公館測站位置。



Jou at al.

圖 13 2015 年 6 月 14 日(a) 1452 LST 五分山雷達 Kdp 分布; (b)台北市區 1200-1600 LST 降雨分布。

## 80 forward trajectories(1240 LST → 1305 LST) which passed through the region of flow convergence at the 1.2-km height cell A: 44, cell B: 36

Miao and Yang (2019; 大氣科學)



The physical mechanism of single merger is the "rear-end" collision associated with the difference of cell propagation speeds.



## 62 forward trajectories(1300 LST → 1336 LST) which passed through the region of flow convergence at the 0.75-km height cell A+B: 32, cell C: 30



The physical mechanism of multiple merger is the "head-on" collision produced by the collision between two cold-air outflows in opposite direction.







qc, qr, qg, qs, qi

mixing ratio contours: {0.1, 0.5, 2.5, 10} g/kg

Miao and Yang (2019; 大氣科學)

#### Area-mean Time Series after Cell Merger



#### After the multiple merger to produce cell "A+B+C" (1320 LST):

- 1. The domain-maximum updraft increased and reached the peak intensity of 45 m/s.
- 2. HFC further increased and then reached its maximum around 1350 LST. The peak surface rainfall rate occurred about 1410 LST (20 minutes later).
- 3. Ice-water path was increased by 6 times.
- 4. The peak precipitation efficiency reached to 85–100 % during 1400–1430 LST.

Area:37.5km x 60km



