A 0.5-kilometer Modeling Study of the Severe Thunderstorm Event with Urban Flooding at Taipei on 14 June 2015

Ming-Jen Yang, Jyong-En Miao National Taiwan University, Taiwan

Introduction

 Jou et al. (2016) performed the observation study of this afternoon thunderstorm (TS_A) event => (1) the merge of several convective cells; (2) enhanced low-level convergence produced by the sea-breeze circulation and thunderstorm coldair outflow

The proposed mechanisms for cloud merging may be due to:
(i) low-level convergence (Tao and Simpson 1989)
(ii) cold pool interaction (Tao and Simpson 1989)
(iii) different propagation speeds of two cells (Lin and Joyce 2001)

2

No significant synoptic forcing for this afternoon thunderstorm (TS_A) event!

From CWB

Weak thermodynamic instability (with an CAPE of 11.7 J/kg) for the 08LST sounding at Panchiao => Weak inversion at 700 hPa 表 5 臺北市於 2015 年 6 月 14 日是否發生午後雷雨之評估檢查表(林等 2012),使用包括淡水、基隆、臺北三 個地面觀測站 0800-1300 LST 之觀測數據及板橋站 0800 LST 探空觀測數據。

STATION	Hour	8	9	10	11	12	13
淡水 (46990)	VDDE(hpa)	29	30.5	31	31.5	31	31
	VPRE(upa)	V	FALSE	FALSE	FALSE	FALSE	V
		74	70.5	69	67.5	67	67.5
	HUMD(%)	V	FALSE	FALSE	FALSE	FALSE	V
	WDIR(degree)	160	250	240	270	280	280
		190	310	310	310	320	320
		V	V	V	FALSE	V	V
	WDSD(m/s)	1.5	2	2	3.5	4.5	4.5
	WD5D(11/5)	V	V	FALSE	V	V	V
	VPRE(hpa)	28.5	28	28.5	28.5	28.5	28.5
		V	V	V	V	V	V
基隆 (46694)	HUMD(%)	68	61	61.5	59	62	60
		V	V	V	V	V	V
	WDIR(degree)	170	30	10	20	0	0
		240	50	50	50	50	50
		FALSE	FALSE	V	FALSE	V	V
	WDSD(m/s)	3	2.5	3.5	4	4.5	5
		V	V	V	V	V	V
台北 (46692)	VPRE(hpa)	28	29	29.5	28.5	28.5	29.5
		V	V	V	V	V	V
	HUMD(%)	70.5	65.5	59	56	54	57
		V	V	V	V	V	V
	WDIR(degree)	140	180	230	230	260	280
		200	210	280	330	350	360
		V	FALSE	FALSE	FALSE	V	V
	WDSD(m/s)	1.5	1.5	2	2	2.5	3
	11000(111/5)	V	V	V	V	V	V
	符合標準項目數 (總數12項)	11	8	8	7	10	12

08LST	hpa	1000	925	850	700	500		
板橋探空	CADE	>500						
	CAPE	X						
	T-Td	<4	<4	<6	<9.5	<11		
		Х	Х	V	Х	Х		
	WDIR	210	230-280	220-280	200-270	200-250		
		V	Х	Х	V	V		
	WDCD	<1.5	<4	<4.5	<6.5	<6.5		
	WDSD	V	V	V	V	Х		
		2	1	2	2	1		

PPI Map of Radar Reflectivity at 0.5 degree elevation angle

5 10 15 20 25 30 35 40 45 50 55 60 65

Vertical Cross Section of Radar Reflectivity along WNW-ESE direction

Time series of rainfall rate

=> Both observation and model simulation show that rainfall rate increases significantly after cell merger!

Testing Hypotheses

Hypotheses:

- 1) Cold pool height was elevated after the cell collision and merger.
- 2) Latent cooling from evaporation and melting has a significant impact on the propagation and strength of coldair outflows.
- **3)** Mixed-phase microphysical processes were critical for the development of thunderstorm outflows and the associated intense rainfall.

Model Configuration

- Version 3.4 of WRF ARW
- two-way nested grid with four domains: 13.5, 4.5, 1.5, 0.5 km
- 55 vertical levels (8 layers within PBL)
- WDM6 microphysics scheme
- Kain-Fritsch cumulus (only D1)
- Dudhia shortwave radiation
- RRTM longwave radiation
- Noah land surface model
- YSU PBL
- MODIS landuse data
- ECMWF ERA-Interim 0.75°x0.75°
- initial time: 6/13 12UTC
- forcast hour: 24hr (\mathbf{K} at t = 15hr)

Surface Temperature

Surface Divergence

6-h Accumulated Rainfall

CNTL-simulated Radar Reflectivity at Z = 1.5km

Radar Reflectivity Horizontal Map: OBS vs. CNTL

CNTL: southward location bias & 1-1.5 h earlier

5 10 15 20 25 30 35 40 45 50 55 60 65

dBZ

Radar Reflectivity Horizontal Map: OBS vs. CNTL

5 10 15 20 25 30 35 40 45 50 55 60 65

16

25-min forward trajectory analysis for 80 air parcels near Cell A & Cell B

=> Rear-end collision due to different speeds of Cell A and Cell B

Contour: vertical velocity, Color: radar reflectivity

18

Contour: Mixing ratios of cloud water (orange), rain water (red), cloud ice (pink), snow (green), and graupel (blue)

19

=> Cold pool head is elevated after cell merger between Cell A+B and Cell C ²⁰

36-min forward trajectory analysis for 62 air parcels near Cell A+B & Cell C

 \Rightarrow Head-on collision due to opposite directions of cold pool propagation Between Cell A+B and Cell C

Low-level thunderstorm features after the merger of Cell A+B and Cell C

Convergence between sea breeze and thunderstorm coldair ourflow

Color: buoyancy , Contour: vertical velocity { -1,2,4,8 } ms⁻¹

b at 35m

-.02

.0

Near-surface buoyancy

 $q_v{}^\prime$ at 35m

Near-surface moisture perturbation

-1.6 -1.2 -.8 -.4 0 .4 .8 1.2 1.6 g/kg

24

LWP

5 10 15 20 25 30 35 40 kg/m²

IWP significantly increased after cell merger!

Coldpool height elevated at intersecting cold pool boundaries!

=> The inversion near 700hPa stops the CAPE calculation!

WRF板橋CAPE 00Z: 907 J/kg 03Z: 1115 J/kg

WRF板橋CAPE 03Z: 1115 J/kg 04Z: 3339 J/kg

shaded: near-surface qv vector: surface wind

Water vapor mixing ratio (kg kg-1)

.014	.015	.016	.017	.018	.019	.02	.021

Danshui River Valley: Danshui, Shilin, Chungho Keelung River Valley: Keelung, Shizi, Wenshan

alley 東北風 -7.5 -6 -4.5 -3 -1.5 0 1.5 3 4.5 6 7.5 西南風

the Keelung River Valley

Time series of maximum vertical velocity within the Taipei Basin

=> Maximum updraft reaches 45 m/s, almost supercell intensity!

Basin-mean Time Series

Area:37.5km x 60km

Basin-mean Time Series

Area:37.5km x 60km

Numerical Experiments

Experiment	Comments
CNTL	full physics
NEVPR	no evaporation cooling of rainwater
NMLTG	no melting cooling of graupel
SIMPICE	simple ice (no mixed phase, no graupel)

Coldpool Characteristics by the Basin-mean Time Series

CNTL: full physics SIMPICE: simple ice NMLTG: no melting cooling of graupel NEVPR: no evaporation cooling of rainwater

Area:37.5km x 60km

Coldpool Characteristics by the Basin-mean Time Series

CNTL: full physics SIMPICE: simple ice NMLTG: no melting cooling of graupel NEVPR: no evaporation cooling of rainwater

Area:37.5km x 60km

Coldpool Characteristics by the Basin-mean Time Series

full physics CNTL: SIMPICE: simple ice NMLTG: no melting cooling of graupe NEVPR: no evaporation cooling of rainwater

Area:37.5km x 60km

Cold pool propagation speed

Div_14:20

CNTL

NEVPR

NMLTG

\$

SIMPICE

5 о

18

ŝ

1 1

Conclusions

- Enhanced low-level convergence produced by sea breeze with abundant moisture triggered the development of this afternoon thunderstorm event.
- Water vapor horizontal flux convergence peak occurred earlier than surface rainrate peak by 20 minutes.
- Graupel amount was increased considerably after cell merger. Cold pool height was elevated significantly at the intersecting cold pool boundaries.
- Evaporation cooling played a major role in the propagation and intensification of cold outflow, while melting cooling played a minor role. However, mixed-phase microphysics was still important.

Thank you for listening

