#### Kinematic, Precipitation, and Microphysics Structures of Typhoon Nari (2001)

Ming-Jen Yang

Dept. of Atmospheric Sciences, Inst. of Hydrological & Oceanic Sciences National Central University, Taiwan



Seminar at CCU, 2009/03/19

## **TRMM Observations**

#### 2001/09/15 0026 UTC



#### 2001/09/15 0026 UTC



#### 2001/09/16 1740 UTC



#### 2001/09/16 1740 UTC



#### 2001/09/17 0012 UTC



#### 2001/09/19 2303 UTC



#### 2001/09/19 2303 UTC



### **MM5** Simulation

Yang, M.-J., D.-L. Zhang, and H.-L. Huang, 2008: A modeling study of Typhoon Nari (2001) at landfall. Part I: Topographic effects. *J. Atmos. Sci.*, 65, 3095–3115.



#### Accumulated Rainfall

9/16 00:00 ~ 9/19 00:00



Max ~ 1500 mm

# Track Comparison



### **Time Series of SLP and Vmax**



#### 3-day rainfall (09/16~09/18)

OBS

#### 6km MM5

2km MM5



### **Average Rainfall on Taiwan**

| Item        | N    | 09/16 | 09/17 | 09/18 | 3-Day<br>Total |
|-------------|------|-------|-------|-------|----------------|
| OBS (in mm) | 325  | 132   | 206   | 97    | 435            |
| 6km MM5     | 1073 | 159   | 104   | 75    | 348            |
| 2km MM5     | 9602 | 175   | 133   | 84    | 383            |

### **Percentage wrt Rain Gauge OBS**

| MM5/OBS | 09/16 | 09/17 | 09/18 | 3-Day<br>Total |
|---------|-------|-------|-------|----------------|
| 6km MM5 | 121 % | 51 %  | 78 %  | 80 %           |
| 2km MM5 | 133 % | 65 %  | 87 %  | 88 %           |

# Radar Composite Before Landfall

**OBS** 

2-km MM5





MM5 Radar CV @ 9/16 0130Z (1-h time averaged)

# **Radar Composite After Landfall**

OBS

#### **2-km MM5**





MM5 Radar CV @ 9/16 1200Z (1-h time averaged)

### Conceptual Model of the Inner-Core Structure in a Mature Hurricane



Liu et al. (1999) Part II









Radar Echo (color) Condensational Heating (contour)









Distance form the center (km)

(NE) D1

C1 (SW)

#### **Before Landfall**

Radar Echo (shading) Tangential Velocity (contour)







Radar Echo (shading) Updraft (solid red) Downdraft (dashed blue)









Radar Echo (shading) Radial Velocity (contour)











#### Radar Echo (shading) Theta-E (Contour)









Radar Echo (shading) Cloud Ice (blue line) Cloud Water (red line)









Snow (blue line) Rain (red line) Graupel (colored)











Condensation Heating (solid line) Evaporation Cooling (dashed line)











Deposition Heating (solid black) Sublimative Cooling (dashed blue) Melting Cooling (dashed black)











Total Latent Heating (solid black) Total Latent Cooling (dashed blue)



#### Midlatitude MCS/Cv



# Trajectory Analyses



#### Air-Parcel Forward Trajectories (t= 24-42 h) Starting @ R=30 km; sigma=0.95





### 24-06h backward hydrometeor trajectories starting @ R=30km; sigma=0.995



#### 24-h Accumulated Rainfall on 09/17

OBS

#### 6km MM5

#### 2km MM5







# 42-24h backward hydrometeor trajectories starting @ R=30km; sigma=0.995



# Axisymmetric Structure (Before vs. After Landfall)

### Azimuthal-avg. structure (r=200 km) while Nari is over ocean















### Semicircle-avg. structure (r=180 km) Nari@landfall











### Azimuthally averaged (r=180 km)





0.0

0 10 20 30 40 50 60 70 80 90 100 W Distance (km)  $dB_2$ 

24

22

20

18

16

10

Е

100 110 120 130 140 150 160 170 180









# The Center of Nari Typhoon on Land (dBZ & wind vector)









# Conclusions (I)

- Precipitation structure changes:
- $\rightarrow$  Precipitation is widely spread over a larger area.
- →Cloud water amount averaged within the inner core is nearly doubled and maximized at lower level.
- →Rain water amount averaged within the inner core is increased by 50-70%, mainly produced by melting by graupel particles.
- →Ice-phase hydrometeors remain similar vertical profiles after landfall.
  - The dominant latent heating (cooling) process within eyewall is condensational heating (evaporative cooling); ice-phase processes are more important in outer rainbands.

# Conclusions (II)

Latent-heating/cooling structure changes:

- Condensational heating avg. within inner core is almost doubled, and maximized at lower height
- →Evaporative cooling avg. within inner core is increased by 50-70%
- →Total latent heating within inner core is stronger (almost doubled for peak intensity) and located at a lower height (5 km to 3.5 km) after landfall

The vortex circulation center is not collocated with the precipitation minimum after Nari's landfall over the Central Mountain Range