Ensemble Forecast of Rainfall over the Taiwan Area during the 2000-2002 Mei-Yu Seasons

Ming-Jen Yang ${ }^{1}$, Ben J.-D. Jou ${ }^{2}$, Fang-Ching Chien ${ }^{3}$, Pay-Liam Lin ${ }^{4}$, Shi-Chieh Wang ${ }^{5}$, Jing-Shan Hong ${ }^{6}$, Jen-Hsin Teng ${ }^{6}$, and Huei-Chuan Lin ${ }^{7}$

${ }^{1}$ Institute of Hydrological Sciences, National Central University
${ }^{2}$ Department of Atmospheric Sciences, National Taiwan University ${ }^{3}$ Department of Earth Sciences, National Taiwan Normal University ${ }^{4}$ Department of Atmospheric Sciences, National Central University
${ }^{5}$ Department of Atmospheric Sciences, Chinese Culture University
${ }^{6}$ Central Weather Bureau
${ }^{7}$ Civil Aeronautics Administration

Outline

C Objectives
C Methodology
\checkmark Model and Experimental Design
C Evaluation Methods
C Rainfall Forecast Evaluation Results

Objectives

- How is the ability of the $15-\mathrm{km}$ MM5 simulating rainfall over Taiwan during the 2000-2002 Mei-Yu seasons?
- How does the MM5 precipitation forecast evaluation change with rainfall thresholds and forecast periods?
- How does different combination of cumulus and microphysics scheme affect precipitation forecasts over Taiwan during the 2000-2002 Mei-Yu seasons?
- Can an ensemble forecast really provide a better precipitation forecast? If yes, how much is the gain?

Verification Data

c CWB's islandwide 343 automatic raingauge observations
C MM5 forecasted 12-h rainfalls during the 2000-2002 Mei-Yu seasons by six ensemble members (NTU, NCU, NTNU, CCU, CWB, CAA)

Precipitation Physics Combination of Ensemble Members

Member	Cumulus	Microphysics	Site
BM-R1	Betts-Miller	Reisner 1	NCU
KF-SI	Kain-Fritsch	Simple Ice	NTNU
KF-GD	Kain-Fritsch	Goddard	CCU
AK-SI	Anthes-Kuo	Simple Ice	CWB
GR-R1	Grell	Reisner 1	NTU
KF-R1	Kain-Fritsch	Reisner 1	CAA

Evaluation Method

ζ First, interpolate raingauge observations into the MM5 grid points using an arithmetic averaging.
σ Then, construct a rainfall contingency table based on observed and forecasted rainfalls.

C Produce an ensemble forecast of rainfall using a multiple linear regression (MLR) method
σ Evaluate rainfall forecasts of six members and the MLR ensemble mean

MM5 Configuration

C Grid Size

D1: 45 km
D2 : 15 km

C Grid Points
D1: 71×81
D2: 79×79

Grid-Point Rainfall Analysis

Arithmetic Averaging:

N is number of raingauge stations inside a 15-km MM5 grid;
is the analyzed rainfall on a MM5 grd;
is the observed rainfall by raingauge.
-Raingauge (dot): 343 points
-MM5 grid (cross): 140 points on Taiwan
51 points for verification
(after data screening)

Ensemble rainfall forecast using a multiple linear regression (MLR) method: (Thanks to Dr. P.-J. Sheu)

Assume observed rainfall (\mathbf{O}) can be expressed as a linear combination of MM5-forecasted rainfalls (M) as:

(1)
where m_{1} is the first ensemble member, m_{2} is the second ensemble member, and so on. N is the total number of forecast rainfall events (58 events) during a Mei-Yu season.

The above equation can be written in a vector form as:

$$
\vec{O}=\alpha \vec{m}_{1}+\beta \vec{m}_{2}+\gamma \vec{m}_{3}+\kappa \vec{m}_{4}+\delta \vec{m}_{5}+\varepsilon \vec{m}_{6}-\vec{r}
$$

Then the rainfall forecast error is

$$
\begin{equation*}
\vec{r}=\alpha \vec{m}_{1}+\beta \vec{m}_{2}+\gamma \vec{m}_{3}+\kappa \vec{m}_{4}+\delta \vec{m}_{5}+\varepsilon \vec{m}_{6}-\vec{O} \tag{3}
\end{equation*}
$$

wherea $, \beta, Y, K, \delta, \epsilon$ is the weighting coefficient for each member.

The square of forecast error is

$$
\begin{equation*}
r^{2}=\vec{r} \cdot \vec{r}=\left(\alpha \vec{m}_{1}+\beta \vec{m}_{2}+\gamma \vec{m}_{3}+\kappa \vec{m}_{4}+\delta \vec{m}_{5}+\varepsilon \vec{m}_{6}-\vec{O}\right)^{2} \tag{4}
\end{equation*}
$$

Then a minimization of rainfall forecast error in a least square sense can be obtained by setting

$$
\begin{equation*}
\frac{\partial r^{2}}{\partial \alpha}=0=2 \vec{m}_{1} \cdot\left(\alpha \vec{m}_{1}+\beta \vec{m}_{2}+\gamma \vec{m}_{3}+\kappa \vec{m}_{4}+\delta \vec{m}_{5}+\varepsilon \vec{m}_{6}-\vec{O}\right) \tag{5a}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial r^{2}}{\partial \beta}=0=2 \vec{m}_{2} \cdot\left(\alpha \vec{m}_{1}+\beta \vec{m}_{2}+\gamma \vec{m}_{3}+\kappa \vec{m}_{4}+\delta \vec{m}_{5}+\varepsilon \vec{m}_{6}-\vec{O}\right) \tag{5b}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial r^{2}}{\partial \gamma}=0=2 \vec{m}_{3} \cdot\left(\alpha \vec{m}_{1}+\beta \vec{m}_{2}+\gamma \vec{m}_{3}+\kappa \vec{m}_{4}+\delta \vec{m}_{5}+\varepsilon \vec{m}_{6}-\vec{O}\right) \tag{5c}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial r^{2}}{\partial \kappa}=0=2 \vec{m}_{4} \cdot\left(\alpha \bar{m}_{1}+\beta \vec{m}_{2}+\gamma \vec{m}_{3}+\kappa \vec{m}_{4}+\delta \vec{m}_{5}+\varepsilon \vec{m}_{6}-\vec{O}\right) \tag{5d}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial r^{2}}{\partial \delta}=0=2 \bar{m}_{5} \cdot\left(\alpha \bar{m}_{1}+\beta \bar{m}_{2}+\gamma \bar{m}_{3}+\kappa \vec{m}_{4}+\delta \bar{m}_{5}+\varepsilon \bar{m}_{6}-\vec{O}\right) \tag{5e}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial r^{2}}{\partial \varepsilon}=0=2 \vec{m}_{6} \cdot\left(\alpha \vec{m}_{1}+\beta \vec{m}_{2}+\gamma \vec{m}_{3}+\kappa \vec{m}_{4}+\delta \vec{m}_{5}+\varepsilon \vec{m}_{6}-\bar{O}\right) \tag{5f}
\end{equation*}
$$

After some arrangements, we can have

$$
\begin{equation*}
\left(\vec{m}_{1} \cdot \vec{m}_{1}\right) \alpha+\left(\vec{m}_{1} \cdot \vec{m}_{2}\right) \beta+\left(\vec{m}_{1} \cdot \vec{m}_{3}\right) \gamma+\left(\vec{m}_{1} \cdot \vec{m}_{4}\right) \kappa+\left(\vec{m}_{1} \cdot \vec{m}_{5}\right) \delta+\left(\vec{m}_{1} \cdot \vec{m}_{6}\right) \varepsilon=\vec{m}_{1} \cdot \vec{O} \tag{6a}
\end{equation*}
$$

$\left(\vec{m}_{2} \cdot \vec{m}_{1}\right) \alpha+\left(\vec{m}_{2} \cdot \vec{m}_{2}\right) \beta+\left(\vec{m}_{2} \cdot \vec{m}_{3}\right) \gamma+\left(\vec{m}_{2} \cdot \vec{m}_{4}\right) \kappa+\left(\vec{m}_{2} \cdot \vec{m}_{5}\right) \delta+\left(\vec{m}_{2} \cdot \vec{m}_{6}\right) \varepsilon=\vec{m}_{2} \cdot \vec{O}$
$\left(\vec{m}_{3} \cdot \vec{m}_{1}\right) \alpha+\left(\vec{m}_{3} \cdot \vec{m}_{2}\right) \beta+\left(\vec{m}_{3} \cdot \vec{m}_{3}\right) \gamma+\left(\vec{m}_{3} \cdot \vec{m}_{4}\right) \kappa+\left(\vec{m}_{3} \cdot \vec{m}_{5}\right) \delta+\left(\vec{m}_{3} \cdot \vec{m}_{6}\right) \varepsilon=\vec{m}_{3} \cdot \vec{O}$
$\left(\vec{m}_{4} \cdot \vec{m}_{1}\right) \alpha+\left(\vec{m}_{4} \cdot \vec{m}_{2}\right) \beta+\left(\vec{m}_{4} \cdot \vec{m}_{3}\right) \gamma+\left(\vec{m}_{4} \cdot \vec{m}_{4}\right) \kappa+\left(\vec{m}_{4} \cdot \vec{m}_{5}\right) \delta+\left(\vec{m}_{4} \cdot \vec{m}_{6}\right) \varepsilon=\vec{m}_{4} \cdot \vec{O}$
$\left(\vec{m}_{5} \cdot \vec{m}_{1}\right) \alpha+\left(\vec{m}_{5} \cdot \vec{m}_{2}\right) \beta+\left(\vec{m}_{5} \cdot \vec{m}_{3}\right) \gamma+\left(\vec{m}_{5} \cdot \vec{m}_{4}\right) \kappa+\left(\vec{m}_{5} \cdot \vec{m}_{5}\right) \delta+\left(\vec{m}_{5} \cdot \vec{m}_{6}\right) \varepsilon=\vec{m}_{5} \cdot \vec{O}$
$\left(\vec{m}_{6} \cdot \stackrel{\rightharpoonup}{m}_{1}\right) \alpha+\left(\vec{m}_{6} \cdot \vec{m}_{2}\right) \beta+\left(\vec{m}_{6} \cdot \stackrel{\rightharpoonup}{m}_{3}\right) \gamma+\left(\vec{m}_{6} \cdot \stackrel{\rightharpoonup}{4}_{4}\right) \kappa+\left(\vec{m}_{6} \cdot \vec{m}_{5}\right) \delta+\left(\vec{m}_{6} \cdot \vec{m}_{6}\right) \varepsilon=\vec{m}_{6} \cdot \vec{o}$
We can re-write the above system of equations in a matrix form,

$\left[\begin{array}{l} \vec{m}_{1} \cdot \vec{m}_{1} \\ \vec{m}_{2} \cdot \vec{m} \\ \vec{m}_{3} \cdot \vec{m} \tag{7}\\ \vec{m}_{4} \cdot \vec{m} \\ \vec{m}_{5} \cdot \vec{m} \\ \vec{m}_{6} \cdot \vec{m} \end{array}\right.$	$\begin{aligned} & \vec{m}_{1} \cdot \vec{m}_{2} \\ & \vec{m}_{2} \cdot \vec{m}_{2} \\ & \vec{m}_{3} \cdot \vec{m}_{2} \\ & \vec{m}_{4} \cdot \vec{m}_{2} \\ & \vec{m}_{5} \cdot \vec{m}_{2} \\ & \vec{m}_{6} \cdot \vec{m}_{2} \end{aligned}$	$\begin{aligned} & \vec{m}_{1} \cdot \vec{m}_{3} \\ & \vec{m}_{2} \cdot \vec{m}_{3} \\ & \vec{m}_{3} \cdot \vec{m}_{3} \\ & \vec{m}_{4} \cdot \vec{m}_{3} \\ & \vec{m}_{5} \cdot \vec{m}_{3} \\ & \vec{m}_{6} \cdot \vec{m}_{3} \end{aligned}$	$\begin{aligned} & \vec{m}_{1} \cdot \vec{m}_{4} \\ & \vec{m}_{2} \cdot \vec{m}_{4} \\ & \vec{m}_{3} \cdot \vec{m}_{4} \\ & \vec{m}_{4} \cdot \vec{m}_{4} \\ & \vec{m}_{5} \cdot \vec{m}_{4} \\ & \vec{m}_{6} \cdot \vec{m}_{4} \end{aligned}$	$\begin{aligned} & \vec{m}_{1} \cdot \vec{m}_{5} \\ & \vec{m}_{2} \cdot \vec{m}_{5} \\ & \vec{m}_{3} \cdot \vec{m}_{5} \\ & \vec{m}_{4} \cdot \vec{m}_{5} \\ & \vec{m}_{5} \cdot \vec{m}_{5} \\ & \vec{m}_{6} \cdot \vec{m}_{5} \end{aligned}$	$\vec{m}_{1} \cdot \vec{m}_{6}$ $\vec{m}_{2} \cdot \vec{m}_{6}$ $\vec{m}_{3} \cdot \vec{m}_{6}$ $\vec{m}_{4} \cdot \vec{m}_{6}$ $\vec{m}_{4} \cdot \vec{m}_{6}$ $\vec{m}_{6} \cdot \stackrel{\rightharpoonup}{m}_{6}$	$\left[\begin{array}{l}\alpha \\ \beta \\ \gamma \\ \kappa \\ \delta\end{array}\right.$	$\left[\begin{array}{l}\vec{m}_{1} \cdot \vec{O} \\ \vec{m}_{2} \cdot \vec{O} \\ \vec{m}_{3} \cdot \vec{O} \\ \vec{m}_{4} \cdot \vec{O} \\ \vec{m}_{5} \cdot \vec{O} \\ \vec{m}_{6} \cdot \vec{O}\end{array}\right.$
			A				C

Thus a minimization of square of forecast rainfall error can be written as

$$
\mathrm{AB}=\mathbf{C}
$$

So

$$
\mathbf{B}=\mathbf{A}^{-1} \mathbf{C}
$$

where vector B whose element ($a, \beta, \gamma, \kappa, \delta, \epsilon$) is the weighting coefficient of each ensemble member.

Rainfall Contingency Table

Observed Rain Forecasted	No Rain	
Rain	A	B
No Rain	C	D

Note: N is the total number of events $(\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D})$
Precipitation thresholds used in this study:
$0.3,2.5,5,10,15,25,35$, and 50.

Evaluation Scores

Based on A, B, C, D in the contingency table, several forecast evaluation scores can be defines as:

BS (Bias Score) $=(\mathrm{A}+\mathrm{B}) /(\mathrm{A}+\mathrm{C})$
ETS (Equitable Threat Score) $=(\mathrm{A}-\mathrm{E}) /(\mathrm{A}+\mathrm{B}+\mathrm{C}-\mathrm{E})$
$\mathrm{E}($ Random Guess $)=(\mathrm{A}+\mathrm{B}) *(\mathrm{~A}+\mathrm{C}) / \mathrm{N}$
$\mathrm{TS}($ Threat Score $)=\mathrm{A} /(\mathrm{A}+\mathrm{B}+\mathrm{C})$
P.S. N is the total number of events $(\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D})$

2000 Mei-Yu Season

12-h accumulated rainfall averaged for all raingauge stations on the Taiwan island.

2001 Mei-Yu Season

12-h accumulated rainfall averaged for all raingauge stations on the Taiwan island.

2002 Mei-Yu Season

12-h accumulated rainfall averaged for all raingauge stations on the Taiwan island.

Rainfall Distribution during the 2000 Mei-Yu Season

Rainfall Distribution during the 2001 Mei-Yu Season

Rainfall Distribution during the 2002 Mei-Yu Season

Observed vs. Forecasted Rainfall Amount for KF-GD the 12-24 h Forecast

2000 Mei-Yu Season

KF-GD the 12-24 h Forecast

KF-SI

2001 Mei- Yu
Season

Observed vs. Forecasted Rainfall Amount for KF-GD the 12-24 h Forecast

KF-SI

2002 Mei- Yu
Season

2000
Observed vs. MLR Ensemble Forecasted Rainfall Amount for the 12-24 h Forecast

2002

2001

 (e)KF-R1
(d)KF-GD

(c) GR-R1

Observed Rainfall

(a)
(b) $\mathrm{BM}-\mathrm{R} 1$

2002 Mei-Yu Season
Horizontal ETS
Distribution
For 12-24 h fcst

Observed Rainfall

(d)KF-GD

(e)KF-R1

(f)KF-SI

Mean: Same weighting for Six members

WT: multiple linear regression (MLR) method

BKG-R1: Same weighting for Three CPS members

KF-SGR: Same weighting for Three Microphysics members

2000

BS Scores for Four Ensemble 12-24 h Forecasts

2001

Mean: Same weighting for Six members

WT: multiple linear regression (MLR) method

BKG-R1: Same weighting for Three CPS members

2002

KF-SGR: Same weighting for Three Microphysics members

(d)

KF-GD-24-2000

(b)

BM-R1-24-2000
GR-R1-24-2000

(e)

KF-R1-24-2000

${ }^{(f)} \mathrm{KF}-\mathrm{SI}-24-2000$

0.9
0.7
0.6
0.5
0.3
0.2
0.1

0
-0.2
-0.3
-0.4
-0.6

2001 Mei-Yu Seasor Weighting Coefficien for $12-24 \mathrm{~h}$ fcst

Observed Rainfall

12-24 h 2001

ETS

24-36 h 2001

Mean: Same Weighting for Six Members
OOWT: Use the MLR Weighting from Year 2000 01WT: Use the MLR Weighting from Year 2001 (Current Year)

Taiwan's Mei-Yu Season MLR Ensemble Forecasting

12-24 h 2001 (MM5 15 km)

Washington's
Cold Season
(Colle et al. 1999)

NCEP Model Forecast for Threshold = 2.5 mm

24 hour Forecast of Daily QPF

Eta vs AVN vs NGM

(b) Eq. Threat Scores (18 h) Valid 7 Jan 97 - 30 Apr 97

18-h Thresholds (inches)
18 h tcst

A Comparison of Ensemble Forecasting with High-Resolution (5-km) Forecasting

Bias
P.S. High-Resolution Forecasting is provided by Hong (2003)

ETS

Bias

Mean: Same Weighting for Six Members OOWT: Use the MLR Weighting from Year 2000 01WT: Use the MLR Weighting from Year 2001 02WT: Use the MLR Weighting from Year 2002 (Current Year)

Conclusions (1/3)

(1) A combination of Grell CPS with Reisner-1 microphysics provided the best QPF over Taiwan during the 2000-2002 MeiYu seasons, and the second best was Kain-Fritsch CPS with Simple-Ice microphysics.
(2) For rainfall occurrence forecast, most members had better skill over the NE mountain area, NW coastal plan, central mountain cascade, SW coastal plain, and SW mountain area. These areas were also regions of more accumulated rainfalls during the Mei-Yu seasons.
(3) An ensemble forecast of rainfall using the MLR method had the best ETS and BS performance for all rainfall thresholds, and it persistently outperformed the MEAN forecast with 6 members having the same weighting.

Conclusions (2/3)

(4) The ETS scores for the MLR ensemble forecasting:

- Year 2000: for 12-24 fcst, the ETS score is 0.15~0.35 for all precip. thresholds; for $24-36 \mathrm{~h} \mathrm{fcst}$, the ETS score is $0.18 \sim 0.24$ for mid-to-heavy rainfalls ($15 \sim 50 \mathrm{~mm}$).
- Year 2001 (most rainfall): the ETS score is 0.15~0.25 for all precip. thresholds.
- Year 2002 (least rainfall): the ETS score is 0.12~0.2 for all precip. thresholds.
(5) The MLR ensemble forecasting applies more weighting over regions of higher ETS scores, thus producing a better predictive skill for all (particularly for high) precip. thresholds.

Conclusions (3/3)

(6) The MLR ensemble forecasting with weighting from previous years still had similar trends of ETS and BS to those determined from current-year weighting, albeit with less skill.

Taiwan's rainfalls during the Mei-Yu seasons may have some climatological characteristics, and the MLR ensemble forecasting may be able to capture this climatological attribute.

