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Precipitation Physics Combination of
Six Ensemble Members

Member Cumulus Microphysics Site
BM-R1 Betts-Miller Reisner 1 NCU
KF-SI Kain-Fritsch Simple Ice NTNU
KF-GD Kain-Fritsch Goddard CCU
AK-SI Anthes-Kuo Simple Ice CWB
GR-R1 Grell Reisner 1 NTU
KF-R1 Kain-Fritsch Reisner 1 CAA




Grid-Point Rainfall Analysis

¢« Arithmetic Averaging:
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N Is number of raingauge stations inside a
15-km MM5 grid;

IS the analyzed rainfall on a MMS grd;
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IS the observed rainfall by raingauge.

*Raingauge (dot): 343 points
*MMS5 grid (cross): 140 points on Talwan
51 points for verification

(after data screening)



Ensemble rainfall forecast using a multiple linear
regression (MLR) method:

Assume observed rainfall (O) can be expressed as a linear
combination of MM5-forecasted rainfalls (M) as:

5)1 (M),
(m5)2 (me)z
s M3 |, (Ms),

(1)

5)N (mG)N

where m; is the first ensemble member, m, is the second

ensemble member, and so on. N is the total number of forecast
rainfall events during a Mei-Yu season.

The above equation can be written in a vector form as:

O=am, + M, +yM, + kM, + oM, + My - T

(2)



Then the rainfall forecast error.is

F=qam, + M, + yM, + kM, + Sm, + em, — O ©))

whered,3,V,K, O, & is the weighting coefficient for
each member.

The square of forecast rainfall error is

F=(am, + M, + ym, + km, + 6m, + em, — 0)° NE))

Then the weighting coefficients (O,3,Vy,K,®,&) can be
determined by the minimization of rainfall forecast error in a
least square sense.



Rainfall Distribution during the 2000 Mel-Yu Season
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Rainfall Distribution during the 2001 Mel-Yu Season
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Rainfall Distribution during the 2002 Mel-Yu Season
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ETS Scores for Four
Ensemble 12-24 h
Forecasts

2000

0.3 25 5.0 10.0 15.0 25.0 35.0 50.0
Threshold(mm)

Mean: Same weighting
for Six members
(used Ineal time)

2001
(MLR) method
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Threshold(mm) BKG-R1: Same weighting
for Three CPS members

2002 KF-SGR: Same weighting

for Three Microphysics
members
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Threshold(mm)
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Summary

(1) For rainfall occurrence forecast, most members had better skill over
the NE mountain area, NW coastal plan,-central mountain slope, SW
coastal plain, and SW mountain area. These.areas were also regions of

more accumulated rainfalls during three Mei-Yu seasons.

(2) An ensemble forecast of rainfall using the MLR method had the best
ETS performance for all rainfall thresholds, and it persistently
outperformed the MEAN forecast with 6 members having the same
weighting.

(3) The MLR ensemble forecasting applies more weighting overregions
of higher ETS scores, thus producing a better predictive skill for all
(particularly for high) precipitation thresholds.

(4) The MLR ensemble forecasting with weighting from previous years still
had similar ETS trend to that determined from current-year weighting,
albeit with less skKill.



Precipitation Processes, of the
Landfalling Typhoon



Track and SST
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D1: 60 km (81x 71x 31) in x-, y-, z-directions
D2: 20 km (91x 91x 31)

D3: 6.67 km (121x 121x 31)

D4: 2.22 km (154x 226x 31)



MM5 model physics (Control)

Item Description

Version Version 3.5
Cumulus Grell (1993)

Microphysics Reisner et al. 1998

PBL MRF (Hong and Pan 1996)
Radiation Dudhia (1989

|.C. ECMWEF advanced analysis

B.C. ECMWEF advanced analysis




Simulated Track

VS.
Observed Track
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Resolution Dependence

Observed 24-h Rainfall

Simulated
24-h
Rainfall




Horizontal Cross Section of
Pressure and Temperature Perturbations
Radar Retrieval (wrt. a MM5 Simulation (wrt. a
Station Sounding) Hydrostatic Basic State)
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Courtesy of T.-C. Chen Wang
and Y.-C. Liou




Vertical Cross Section of
Pressure and Temperature Perturbations

MMS5 Simulation (wrt. a

seuder Foidoyeal (st 2 Hydrostatic Basic State)
Stational Sounding ) " :
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Courtesy of T.-C. Chen Wang
and Y.-C. Liou
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Vertical Profile of
Horizontal Divergence

Radar VAD Analysis MMS5 Simulation
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Simulated 3-h Rainfall Observed Radar Echo (CV)
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6. MMS5 Grid

Gray: Ice Yellow: Snow Light Red: Rain




Vertical Cross Section of
Radar Echo and
Condensational Heating




Vertical Profile of
Condensational Heating

Nari (2001) Herb (1996)
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Vertical Profile of
Vertical Velocity

Nari (2001)
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Nine-Hour Air-Parcel Trajectories
when Nari is over Sea
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Anthes (1969)

Nine-Hour Air-Parcel Trajectories
for Typhoon Nari

I‘I-BS rom L Ol.ll"

T=90-282 HOURS ——> 9 HOUR INTERVALS  jopfo v v vvvi v v oo
0

100 200 300
w Distance (km) E

Figure 1: Particle trajectories calculated from a numerical model
of an asymmetric hurricane. Labels of 3 levels in mb,




Twenty-One-Hour Backward
Hydrometeor Trajectories
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24-h Air-Parcel Trajectory
ending over Mt. Snow
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48-h Air-Parcel Trajectory
ending overl-Lan County
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72-h Air-Parcel Trajectory
ending over Cha-l County
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Summary

(1) The ability of the model to successfully predict the
observed rainfall maximum is increased with the
refinement of grid size, consistent with Wu et. al (2002).

(2) Hydrometeor trajectory analysis may shed some lights
on the high precipitation efficiency over Mt. Snow.

(3) Liquid-phase precipitation mainly occurs within eyewall
and mountain slopes, and ice-phase precipitation occurs
mostly in spiral rainbands.

(4) Simulated temperature and pressure perturbations are
In good agreement with those retrieved by radar data.
Simulated vertical divergence profile also compares fairly
with that estimated by radar observations.

(5) Typhoon Nari (2001) has similar but weaker vertical
profiles of vertical velocity and condensational heating
compared to those of Herb (1996).



Part Ill:
SST impact on oceanic Typhoon Nari

In Cooperation with Prof. C.-H. Sui (NCU/I



Default Setup High-resolution data

MMS5 SST from ECMWEF analysis MMS5 SST from TRMM obs.
(1.125° x 1.125°; weekly) (0.25° x 0.25°; daily)
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TheTime Series of Sea Level Pressure
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Impact-on MPI by increasing SST

Time Series of Central Sea Level Pressure (SLP)
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dSLP/dSST ~ 30 hPa/3K

consistent with Emanuel (1999)
and Holland (1997)



Part |V:
Preliminary result of the MiVI5 coupled
with an intermediate ocea}l del

In Cooperation with Prof. Bin Wang (U. Hawa
and Prof. Xiaolel Zou (FSU)



Typhoon-ocean coupling

MMS5 + an intermediate ocean model (Wang et al. 1995)

wind stress & heat fluxes

MM5 < > Ocean model

Mixed layer

Thermocline layer

Deep resting layer




SST cooling induced by
the typhoon-ocean coupling
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